Exam 2

You must upload the solutions to this exam (as a PDF file) on Canvas by 11:59pm on Sunday $06 / 24$. Since this is a take home, I want all your solutions to be neat and well written.

You can look at our book only! You cannot look at our videos, solutions posted by me or any other references (including the Internet) without my previous approval. Also, of course, you cannot discuss this with anyone!

1) Prove that if $n \in \mathbb{R}$ and $n^{2} \notin \mathbb{Z}$, then $n \notin \mathbb{Z}$.

Proof. We prove using the contrapositive. Assume $n \in \mathbb{Z}$. Since products of integers are integers, we have that $n^{2}=n \cdot n \in \mathbb{Z}$.
2) Let \mathcal{F} and \mathcal{G} be non-empty families of sets. Prove that if $\mathcal{F} \subseteq \mathcal{G}$, then $\bigcup \mathcal{F} \subseteq \bigcup \mathcal{G}$.

Proof. Let $x \in \bigcup \mathcal{F}$. Then, there exists $A \in \mathcal{F}$ such that $x \in A$. Since $A \in \mathcal{F}$ and $\mathcal{F} \subseteq \mathcal{G}$, we have that $A \in \mathcal{G}$. Now, since $x \in A$ and $A \in \mathcal{G}$, we have that $x \in \bigcup G$.
3) Let A_{i}, for $i \in I$, be an indexed family of sets, with $I \neq \varnothing$. Prove that

$$
\bigcap_{i \in I} A_{i} \in \bigcap_{i \in I} \mathscr{P}\left(A_{i}\right) .
$$

Proof. Let $i_{0} \in I$. Then, $\bigcap_{i \in I} A_{i} \subseteq A_{i_{0}}$ [as if $x \in \bigcap_{i \in I} A_{i}$, then $x \in A_{i}$ for all $i \in I$, in particular for $i=i_{0}$], i.e., $\bigcap_{i \in I} A_{i} \in \mathscr{P}\left(A_{i_{0}}\right)$ [by definition of the power set]. Since $i_{0} \in I$ was arbitrary, we have that $\bigcap_{i \in I} A_{i} \in \bigcap_{i_{0} \in I} \mathscr{P}\left(A_{i_{0}}\right)=\bigcap_{i \in I} \mathscr{P}\left(A_{i}\right)$ [since i and i_{0} are bound variables].
4) Let \mathcal{F} and \mathcal{G} be non-empty families of sets. Prove that $(\bigcup \mathcal{F}) \cap(\bigcup \mathcal{G})=\varnothing$ if and only if for all $A \in \mathcal{F}$ and for all $B \in \mathcal{G}$ we have that $A \cap B=\varnothing$.

Proof. [\rightarrow] Assume that $(\bigcup \mathcal{F}) \cap(\bigcup \mathcal{G})=\varnothing$. [We will do by contradiction.] Assume also that there are $A \in \mathcal{F}$ and $B \in \mathcal{G}$ with $A \cap B \neq \varnothing$. Let then $x \in A \cap B$. Since $A \in \mathcal{F}$ and $x \in A$, we have that $x \in \bigcup \mathcal{F}$. Similarly, since $x \in B$ and $B \in \mathcal{G}$, we have that $x \in \bigcup \mathcal{G}$. But this implies that $x \in(\bigcup \mathcal{F}) \cap(\bigcup \mathcal{G})=\varnothing$, and so we have a contradiction. Therefore, for all $A \in \mathcal{F}$ and for all $B \in \mathcal{G}$ we have that $A \cap B=\varnothing$.
$[\leftarrow]$ Assume now that for all $A \in \mathcal{F}$ and for all $B \in \mathcal{G}$ we have that $A \cap B=\varnothing$. [We will again use contradiction.] Assume also that $(\bigcup \mathcal{F}) \cap(\bigcup \mathcal{G}) \neq \varnothing$, and so let $x \in(\bigcup \mathcal{F}) \cap(\bigcup \mathcal{G})$. Thus, $x \in \bigcup \mathcal{F}$
and $x \in \bigcup \mathcal{G}$. The former means that there is $A \in \mathcal{F}$ such that $x \in A$, while the latter means that there is $B \in \mathcal{G}$ such that $x \in B$. So, $x \in A \cap B=\varnothing$, a contradiction. Therefore, we must have that $(\bigcup \mathcal{F}) \cap(\bigcup \mathcal{G})=\varnothing$.
5) Let \mathcal{F} be a non-empty family of sets. Prove that:

$$
B \cup(\bigcup \mathcal{F})=\bigcup(\mathcal{F} \cup\{B\})
$$

[Note: $\mathcal{F} \cup\{B\}$ is a family of sets that has all the sets of \mathcal{F} and also B.]
Proof. [\subseteq] Let $x \in B \cup(\bigcup \mathcal{F})$. So, either $x \in B$ or $x \in \bigcup \mathcal{F}$. [We split in cases.]
If $x \in B$, then, as $B \in \mathcal{F} \cup\{B\}$, we have that $x \in \bigcup(\mathcal{F} \cup B)$.
If $x \in \bigcup \mathcal{F}$, then there is $A \in \mathcal{F}$ such that $x \in A$. But, since $A \in \mathcal{F}$, we have that $A \in \mathcal{F} \cup\{B\}$. So, $x \in \bigcup(\mathcal{F} \cup\{B\})$.
[〕] Suppose now that $x \in \bigcup(\mathcal{F} \cup\{B\})$. Then, for some $A \in \mathcal{F} \cup\{B\}$, i.e., $A \in \mathcal{F}$ or $A \in\{B\}$, which means $A=B$, we have that $x \in A$. If $A \in \mathcal{F}$, then $x \in \bigcup \mathcal{F}$. If $A=B$, then $x \in B$. So, $x \in B \cup(\bigcup \mathcal{F})$.
6) Let \mathcal{F} be a non-empty family of sets such that for any family of sets \mathcal{G} such that $\mathcal{G} \subseteq \mathcal{F}$, we have that $\bigcup \mathcal{G} \in \mathcal{F}$. Prove that there exists a unique $A \in \mathcal{F}$ such that for any $B \in \mathcal{F}$, we have that $B \subseteq A$. [So, A contains every set of \mathcal{F}.]

Proof. Since $\mathcal{F} \subseteq \mathcal{F}$, by assumption we have that $\bigcup \mathcal{F} \in \mathcal{F}$. So, let $A=\bigcup \mathcal{F}$. Now, if $B \in \mathcal{F}$, then $B \subseteq \bigcup \mathcal{F}=A$ [as if $x \in B$, then since $B \in \mathcal{F}$, we have that $x \in \bigcup \mathcal{F}]$. This proves the existence.

Now suppose we have some $A^{\prime} \in \mathcal{F}$ such that for all $B \in \mathcal{F}$, we have that $B \subseteq A^{\prime}$, i.e., A^{\prime} has the same property as A. [We need to prove that $A^{\prime}=A$.] Since $A \in \mathcal{F}$, the above means that $A \subseteq A^{\prime}$. But, since $A^{\prime} \in \mathcal{F}$, the property of A [proved above] gives that $A^{\prime} \subseteq A$. Since $A^{\prime} \subseteq A$ and $A \subseteq A^{\prime}$, we have that $A=A^{\prime}$.

