EXAM 1

P	Q	R	$P \wedge Q$	$Q \vee \neg R$	$(P \land Q) \to (Q \lor \neg R)$
Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т
Т	F	Т	F	F	Т
Т	F	F	F	Т	Т
F	Т	Т	F	Т	Т
F	Т	F	F	Т	Т
F	F	Т	F	F	Т
F	F	F	F	Т	Т

1) Fill in the [*incomplete*] truth-table below:

2) Simplify the expression below using the formulas from pgs. 21 and 23 from the textbook:

$$\neg(\neg P \land Q) \lor [(P \land \neg R) \lor (Q \land \neg Q)]$$

[Hint: It should simplify to $\neg Q \lor P$.]

Solution. We have:

$$\neg (\neg P \land Q) \lor [(P \land \neg R) \lor (Q \land \neg Q)] \sim (\neg (\neg P) \lor \neg Q) \lor [(P \land \neg R) \lor (Q \land \neg Q)]$$
$$\sim (P \lor \neg Q) \lor [(P \land \neg R) \lor (\text{contr.})]$$
$$\sim (P \lor \neg Q) \lor [(P \land \neg R)]$$
$$\sim (\neg Q \lor P) \lor (P \land \neg R)$$
$$\sim \neg Q \lor [P \lor (P \land \neg R)]$$
$$\sim \neg Q \lor P.$$

3) Show that the sets $(A \cup B) \setminus C$ and $(A \setminus B) \cup (B \setminus (A \cup C))$ are not equal [in general], by giving a *concrete* counterexample.

[Note: Drawing the Venn Diagrams is not enough! Although it would give you some partial credit and might help finding the counterexample.]

Solution. We have that $(A \cup B) \setminus C$:

And $(A \setminus B) \cup (B \setminus (A \cup C))$:

So, let $A = B = \{1\}$ and $C = \emptyset$. Then,

$$A \cup B \setminus C = \{1\},\$$
$$(A \setminus B) \cup (B \setminus (A \cup C)) = \emptyset \cup (\{1\} \setminus \{1\}) = \emptyset.$$

So, the sets are different.

4) Express the [nonsensical] statement [with universe of discourse \mathbb{R}]

$$\neg \left[\exists x \ (\forall a \in \mathbb{Z} \ (a \le x \to [\exists b \in \mathbb{Z} \ (a + b = x)]))\right].$$

as a positive statement.

Solution. We have:

$$\neg \left[\exists x \; (\forall a \in \mathbb{Z} \; (a \leq x \to [\exists b \in \mathbb{Z} \; (a+b=x)]))\right] \sim \forall x \neg (\forall a \in \mathbb{Z} \; (a \leq x \to [\exists b \in \mathbb{Z} \; (a+b=x)])) \sim \forall x \; (\exists a \in \mathbb{Z} \neg (a \leq x \to [\exists b \in \mathbb{Z} \; (a+b=x)])) \sim \forall x \; (\exists a \in \mathbb{Z} \; ((a \leq x) \land \neg [\exists b \in \mathbb{Z} \; (a+b=x)])) \sim \forall x \; (\exists a \in \mathbb{Z} \; ((a \leq x) \land [\forall b \in \mathbb{Z} \neg (a+b=x)])) \sim \forall x \; (\exists a \in \mathbb{Z} \; ((a \leq x) \land [\forall b \in \mathbb{Z} \; (a+b\neq x)])) .$$

5) Analyze the following statement: "Every parent has a child who eats only if no one is watching". You can only use the following statements:

$$P(x, y) = x$$
 is a parent of y ,
 $E(x) = x$ eats,
 $W(x, y) = x$ is watching y .

You can leave implicit the universe of discourse as the set of all people.

Solution.

$$\forall x \ [(\exists y \ P(x,y)) \to (\exists z \ (P(x,z) \land (E(z) \to [\forall w \ (\neg W(w,z))])))].$$

6) Analyze the logical form of the following statements. [You may use \in , \notin , =, \neq , \land , \lor , \rightarrow , \leftrightarrow , \forall and \exists , but not \subseteq , \notin , \mathscr{P} , \cap , \cup , \setminus , $\{$, $\}$ or \neg .]

(a) $x \in \bigcup \mathcal{F} \setminus \bigcap \mathcal{G}$, where \mathcal{F} and \mathcal{G} are families of sets;

Solution.

$$\begin{aligned} x \in \bigcup \mathcal{F} \setminus \bigcap \mathcal{G} \sim \left(x \in \bigcup \mathcal{F} \right) \land \neg \left(x \in \bigcap \mathcal{G} \right) \\ \sim \left(\exists A \in \mathcal{F} \ (x \in A) \right) \land \neg \left(\forall B \in \mathcal{G} \ (x \in B) \right) \\ \sim \left(\exists A \in \mathcal{F} \ (x \in A) \right) \land \left(\exists B \in \mathcal{G} \neg (x \in B) \right) \\ \sim \left(\exists A \in \mathcal{F} \ (x \in A) \right) \land \left(\exists B \in \mathcal{G} \ (x \notin B) \right). \end{aligned}$$

(b) $X \in \bigcup_{i \in I} \mathscr{P}(A_i \cap B_i)$, where A_i and B_i , for $i \in I$, are indexed families.

Solution.

$$X \in \bigcup_{i \in I} \mathscr{P}(A_i \cap B_i) \sim \exists i \in I \ [X \in \mathscr{P}(A_i \cap B_i)]$$
$$\sim \exists i \in I \ [X \subseteq A_i \cap B_i]$$
$$\sim \exists i \in I \ [\forall x \in X \ (x \in A_i \cap B_i)]$$
$$\sim \exists i \in I \ [\forall x \in X \ (x \in A_i \wedge x \in B_i)].$$