Exam 1

1) Fill in the [incomplete] truth-table below:

P	Q	R	$P \wedge Q$	$Q \vee \neg R$	$(P \wedge Q) \rightarrow(Q \vee \neg R)$
T	T	T	T	T	T
T	T	F	T	T	T
T	F	T	F	F	T
T	F	F	F	T	T
F	T	T	F	T	T
F	T	F	F	T	T
F	F	T	F	F	T
F	F	F	F	T	T

2) Simplify the expression below using the formulas from pgs. 21 and 23 from the textbook:

$$
\neg(\neg P \wedge Q) \vee[(P \wedge \neg R) \vee(Q \wedge \neg Q)]
$$

[Hint: It should simplify to $\neg Q \vee P$.]
Solution. We have:

$$
\begin{aligned}
\neg(\neg P \wedge Q) \vee[(P \wedge \neg R) \vee(Q \wedge \neg Q)] & \sim(\neg(\neg P) \vee \neg Q) \vee[(P \wedge \neg R) \vee(Q \wedge \neg Q)] \\
& \sim(P \vee \neg Q) \vee[(P \wedge \neg R) \vee(\text { contr. })] \\
& \sim(P \vee \neg Q) \vee[(P \wedge \neg R)] \\
& \sim(\neg Q \vee P) \vee(P \wedge \neg R) \\
& \sim \neg Q \vee[P \vee(P \wedge \neg R)] \\
& \sim \neg Q \vee P .
\end{aligned}
$$

3) Show that the sets $(A \cup B) \backslash C$ and $(A \backslash B) \cup(B \backslash(A \cup C))$ are not equal [in general], by giving a concrete counterexample.
[Note: Drawing the Venn Diagrams is not enough! Although it would give you some partial credit and might help finding the counterexample.]

Solution. We have that $(A \cup B) \backslash C$:

And $(A \backslash B) \cup(B \backslash(A \cup C))$:

So, let $A=B=\{1\}$ and $C=\varnothing$. Then,

$$
\begin{aligned}
A \cup B \backslash C & =\{1\}, \\
(A \backslash B) \cup(B \backslash(A \cup C)) & =\varnothing \cup(\{1\} \backslash\{1\})=\varnothing .
\end{aligned}
$$

So, the sets are different.
4) Express the [nonsensical] statement [with universe of discourse \mathbb{R}]

$$
\neg[\exists x \quad(\forall a \in \mathbb{Z}(a \leq x \rightarrow[\exists b \in \mathbb{Z}(a+b=x)]))] .
$$

as a positive statement.
Solution. We have:

$$
\begin{aligned}
\neg & {[\exists x(\forall a \in \mathbb{Z}(a \leq x \rightarrow[\exists b \in \mathbb{Z}(a+b=x)]))] } \\
& \sim \forall x \neg(\forall a \in \mathbb{Z}(a \leq x \rightarrow[\exists b \in \mathbb{Z}(a+b=x)])) \\
& \sim \forall x(\exists a \in \mathbb{Z} \neg(a \leq x \rightarrow[\exists b \in \mathbb{Z}(a+b=x)])) \\
& \sim \forall x(\exists a \in \mathbb{Z}((a \leq x) \wedge \neg[\exists b \in \mathbb{Z}(a+b=x)])) \\
& \sim \forall x(\exists a \in \mathbb{Z}((a \leq x) \wedge[\forall b \in \mathbb{Z} \neg(a+b=x)])) \\
& \sim \forall x(\exists a \in \mathbb{Z}((a \leq x) \wedge[\forall b \in \mathbb{Z}(a+b \neq x)])) .
\end{aligned}
$$

5) Analyze the following statement: "Every parent has a child who eats only if no one is watching". You can only use the following statements:

$$
\begin{aligned}
P(x, y) & =x \text { is a parent of } y, \\
E(x) & =x \text { eats, } \\
W(x, y) & =x \text { is watching } y .
\end{aligned}
$$

You can leave implicit the universe of discourse as the set of all people.
Solution.

$$
\forall x[(\exists y P(x, y)) \rightarrow(\exists z(P(x, z) \wedge(E(z) \rightarrow[\forall w(\neg W(w, z))])))] .
$$

6) Analyze the logical form of the following statements. [You may use $\in, \notin,=, \neq, \wedge, \vee, \rightarrow, \leftrightarrow, \forall$ and \exists, but not $\subseteq, \nsubseteq, \mathscr{P}, \cap, \cup, \backslash,\{$,$\} or \neg$.]
(a) $x \in \bigcup \mathcal{F} \backslash \bigcap \mathcal{G}$, where \mathcal{F} and \mathcal{G} are families of sets;

Solution.

$$
\begin{aligned}
x \in \bigcup \mathcal{F} \backslash \bigcap \mathcal{G} & \sim(x \in \bigcup \mathcal{F}) \wedge \neg(x \in \bigcap \mathcal{G}) \\
& \sim(\exists A \in \mathcal{F}(x \in A)) \wedge \neg(\forall B \in \mathcal{G}(x \in B)) \\
& \sim(\exists A \in \mathcal{F}(x \in A)) \wedge(\exists B \in \mathcal{G} \neg(x \in B)) \\
& \sim(\exists A \in \mathcal{F}(x \in A)) \wedge(\exists B \in \mathcal{G}(x \notin B)) .
\end{aligned}
$$

(b) $X \in \bigcup_{i \in I} \mathscr{P}\left(A_{i} \cap B_{i}\right)$, where A_{i} and B_{i}, for $i \in I$, are indexed families.

Solution.

$$
\begin{aligned}
X \in \bigcup_{i \in I} \mathscr{P}\left(A_{i} \cap B_{i}\right) & \sim \exists i \in I\left[X \in \mathscr{P}\left(A_{i} \cap B_{i}\right)\right] \\
& \sim \exists i \in I\left[X \subseteq A_{i} \cap B_{i}\right] \\
& \sim \exists i \in I\left[\forall x \in X\left(x \in A_{i} \cap B_{i}\right)\right] \\
& \sim \exists i \in I\left[\forall x \in X \quad\left(x \in A_{i} \wedge x \in B_{i}\right)\right] .
\end{aligned}
$$

