Exam 1

You must upload the solutions to this exam (as a PDF file) on Canvas by 11:59pm on Sunday $06 / 17$. Since this is a take home, I want all your solutions to be neat and well written.

You can look at our book only! You cannot look at our videos, solutions posted by me or any other references (including the Internet) without my previous approval. Also, of course, you cannot discuss this with anyone!

1) Fill in the [incomplete] truth-table below:

P	Q	R	$P \wedge Q$	$Q \vee \neg R$	$(P \wedge Q) \rightarrow(Q \vee \neg R)$
T	T	T			
T	T	F			
T	F	T			
T	F	F			
F	T	T			
F	T	F			
F	F	T			
F	F	F			

2) Simplify the expression below using the formulas from pgs. 21 and 23 from the textbook:

$$
\neg(\neg P \wedge Q) \vee[(P \wedge \neg R) \vee(Q \wedge \neg Q)]
$$

[Hint: It should simplify to $\neg Q \vee P$.]
3) Show that the sets $(A \cup B) \backslash C$ and $(A \backslash B) \cup(B \backslash(A \cup C))$ are not equal [in general], by giving a concrete counterexample.
[Note: Drawing the Venn Diagrams is not enough! Although it would give you some partial credit and might help finding the counterexample.]
4) Express the [nonsensical] statement [with universe of discourse \mathbb{R}]

$$
\neg[\exists x \quad(\forall a \in \mathbb{Z} \quad(a \leq x \rightarrow[\exists b \in \mathbb{Z}(a+b=x)]))]
$$

as a positive statement.
5) Analyze the following statement: "Every parent has a child who eats only if no one is watching". You can only use the following statements:

$$
\begin{aligned}
P(x, y) & =x \text { is a parent of } y, \\
E(x) & =x \text { eats, } \\
W(x, y) & =x \text { is watching } y .
\end{aligned}
$$

You can leave implicit the universe of discourse as the set of all people.
6) Analyze the logical form of the following statements. [You may use $\in, \notin,=, \neq, \wedge, \vee, \rightarrow, \leftrightarrow, \forall$ and \exists, but not $\subseteq, \nsubseteq, \mathscr{P}, \cap, \cup, \backslash,\{$,$\} or \neg$.]
(a) $x \in \bigcup \mathcal{F} \backslash \bigcap \mathcal{G}$, where \mathcal{F} and \mathcal{G} are families of sets;
(b) $X \in \bigcup_{i \in I} \mathscr{P}\left(A_{i} \cap B_{i}\right)$, where A_{i} and B_{i}, for $i \in I$, are indexed families.

