EXAM 1

You must upload the solutions to this exam (as a PDF file) on Canvas by 11:59pm on Sunday 06/17. Since this is a take home, I want all your solutions to be neat and well written.

You can look at *our* book only! You *cannot* look at our videos, solutions posted by me or *any* other references (including the Internet) without my previous approval. Also, of course, you cannot discuss this with *anyone*!

P	Q	R	$P \wedge Q$	$Q \vee \neg R$	$(P \land Q) \to (Q \lor \neg R)$
Т	Т	Т			
Т	Т	F			
Т	F	Т			
Т	F	F			
F	Т	Т			
F	Т	F			
F	F	Т			
F	F	F			

1) Fill in the [*incomplete*] truth-table below:

2) Simplify the expression below using the formulas from pgs. 21 and 23 from the textbook:

$$\neg(\neg P \land Q) \lor [(P \land \neg R) \lor (Q \land \neg Q)]$$

[Hint: It should simplify to $\neg Q \lor P$.]

3) Show that the sets $(A \cup B) \setminus C$ and $(A \setminus B) \cup (B \setminus (A \cup C))$ are not equal [in general], by giving a *concrete* counterexample.

[Note: Drawing the Venn Diagrams is not enough! Although it would give you some partial credit and might help finding the counterexample.]

4) Express the [nonsensical] statement [with universe of discourse \mathbb{R}]

$$\neg \left[\exists x \ (\forall a \in \mathbb{Z} \ (a \le x \to [\exists b \in \mathbb{Z} \ (a + b = x)]))\right]$$

as a positive statement.

5) Analyze the following statement: "Every parent has a child who eats only if no one is watching". You can only use the following statements:

$$P(x, y) = x$$
 is a parent of y ,
 $E(x) = x$ eats,
 $W(x, y) = x$ is watching y .

You can leave implicit the universe of discourse as the set of all people.

6) Analyze the logical form of the following statements. [You may use \in , \notin , =, \neq , \land , \lor , \rightarrow , \leftrightarrow , \forall and \exists , but not \subseteq , \notin , \mathscr{P} , \cap , \cup , \setminus , $\{$, $\}$ or \neg .]

- (a) $x \in \bigcup \mathcal{F} \setminus \bigcap \mathcal{G}$, where \mathcal{F} and \mathcal{G} are families of sets;
- (b) $X \in \bigcup_{i \in I} \mathscr{P}(A_i \cap B_i)$, where A_i and B_i , for $i \in I$, are indexed families.