Exam 4

1) [40 points] Let $\sigma, \tau \in S_{9}$ be given by

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
7 & 5 & 4 & 1 & 9 & 6 & 3 & 2 & 8
\end{array}\right) \quad \text { and } \quad \tau=(15)(3244)(689) .
$$

(a) Write the complete factorization of σ into disjoint cycles.

Solution. $\sigma=(1734)(2598)(6)$.
(b) Write τ is matrix form.

Solution.

$$
\tau=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
5 & 4 & 2 & 7 & 1 & 8 & 3 & 9 & 6
\end{array}\right)
$$

(c) Compute σ^{-1}. [Your answer must be in disjoint cycles form!]

Solution. $\sigma^{-1}=(4371)(8952)(6)=(1437)(2895)(6)$.
(d) Compute $\sigma \tau$. [Your answer must be in disjoint cycles form!]

Solution. $\sigma \tau=(1962)(3574)(8)$
(e) Compute $\sigma \tau \sigma^{-1}$. [Your answer must be in disjoint cycles form!]

Solution. $\sigma \tau \sigma^{-1}=(79)(4513)\left(\begin{array}{ll}6 & 2\end{array}\right)$.
(f) Write τ as a product of transpositions.

Solution. $\tau=(15)(37)(34)(32)(69)(68)$.
(g) Compute $\operatorname{sign}(\tau)$.

Solution. $\operatorname{sign}(\tau)=(-1)^{6}=1\left[\right.$ or $\left.\operatorname{sign}(\tau)=(-1)^{9-3}=1\right]$.
(h) Compute $|\tau|$.

Solution. $|\tau|=\operatorname{lcm}(2,4,3)=12$.
2) Decide if True or False [with justifications!].
(a) [7 points] The set of real numbers \mathbb{R} is a group with multiplication.

Solution. It's False. Clearly $e=1$ [the identity] and there is no $x \in \mathbb{R}$ such that $x \cdot 0=1$.
(b) [8 points] Every infinite group has an element of infinite order.
[Hint: Every ring is a group with addition. So, we have lots of examples of groups to think of.]

Solution. It's False. We have that $\mathbb{F}_{2}[x]$ is a group with addition $\left[\right.$ as $\mathbb{F}_{2}[x]$ is a ring] and in it every $f \in \mathbb{F}_{2}[x]$ is such that $f+f=0$ [as $2=0$ in $\left.\mathbb{F}_{2}\right]$, so every non-zero element has order 2 . Also note it is infinite [as any polynomial ring], as it contains x, x^{2}, x^{3}, etc.
3) [15 points] Let G be a group [with multiplicative notation], m and n be positive integers such that $\operatorname{gcd}(m, n)=1$, and $x \in G$ such that $x^{m}=x^{n}=e$ [where e is the identity element, i.e., the " 1 " of the group]. Prove that $x=e$.
[Hint: Use the Extended Euclidean Algorithm [or what I call Bezout's Theorem] for m and n. What is then x^{1} ? [Think of two ways to find what it is. Of course, they have to be equal to each other, even if the look different.] Also, Corollary 2.50 might come handy.]

Proof. By Bezout's Theorem, we have that there are integers r and s such that $1=r m+s n$. So, using Corollary 2.50 we get:

$$
x=x^{1}=x^{r m+s n}=x^{r m} \cdot x^{s n}=\left(x^{m}\right)^{r} \cdot\left(x^{n}\right)^{s}=e^{r} \cdot e^{s}=e \cdot e=e .
$$

4) [15 points] Let $G=\mathbb{Q}(x, y) \backslash\{0\}$ [i.e., the set of rational functions on x and y and rational coefficients, except for 0] and

$$
H=\left\{a x^{m} y^{n}: a \in \mathbb{Q} \backslash\{0\} \text { and } m, n \in \mathbb{Z}\right\} .
$$

[Note that m and n can be zero or negative!] Prove that H is a subgroup of G. [Of course, G and H are multiplicative groups, as they are not groups with respect to addition.]

Proof. First, observe that $1 \in H$, as $1=1 \cdot x^{0} \cdot y^{0}$.
Now, let $a x^{m} y^{n}$ and $b x^{r} y^{s}$, such that $a, b \in \mathbb{Q} \backslash\{0\}$ and $m, n, r, s \in \mathbb{Z}$. Since $b \in \mathbb{Q} \backslash\{0\}$, we have that $b^{-1} \in \mathbb{Q} \backslash\{0\}$. So,

$$
a x^{m} y^{n} \cdot\left(b x^{r} y^{s}\right)^{-1}=a x^{m} y^{n} \cdot b^{-1} x^{-r} y^{-s}=\left(a b^{-1}\right) x^{m-r} y^{n-s} .
$$

Since $a b^{-1} \in \mathbb{Q} \backslash\{0\}$ and $(m-r),(n-s) \in \mathbb{Z}$, we have that $a x^{m} y^{n} \cdot\left(b x^{r} y^{s}\right)^{-1} \in H$.
Hence, H is a subgroup of G.
5) [15 points] Let p be a prime and G be a group of order p^{2}. Prove that G has an element of order p.
[Hint: What are the possible orders of elements in G ? What elements have order 1? You can also use Problem 2.40 [without solving it].]

Proof. Let $x \in G$. Since $p^{2}>1$, we may assume $x \neq e$ [i.e., not the identity element]. Hence, we have that $|x| \neq 1$. Since $|x|\left||G|=p^{2}\right.$, and p is prime, we have that $| x \mid$ is either p or p^{2}. If $|x|=p$, we are done. If not, then by Problem 2.40, we have that $\left|x^{p}\right|=p$. So, either x or x^{p} has order p.

