
Exam 4

1) [40 points] Let σ, τ ∈ S9 be given by

σ =

(
1 2 3 4 5 6 7 8 9
7 5 4 1 9 6 3 2 8

)
and τ = (1 5)(3 2 4 7)(6 8 9).

(a) Write the complete factorization of σ into disjoint cycles.

Solution. σ = (1 7 3 4)(2 5 9 8)(6).

(b) Write τ is matrix form.

Solution.

τ =

(
1 2 3 4 5 6 7 8 9
5 4 2 7 1 8 3 9 6

)
.

(c) Compute σ−1. [Your answer must be in disjoint cycles form!]

Solution. σ−1 = (4 3 7 1)(8 9 5 2)(6) = (1 4 3 7)(2 8 9 5)(6).

(d) Compute στ . [Your answer must be in disjoint cycles form!]

Solution. στ = (1 9 6 2)(3 5 7 4)(8)

(e) Compute στσ−1. [Your answer must be in disjoint cycles form!]

Solution. στσ−1 = (7 9)(4 5 1 3)(6 2 8).

(f) Write τ as a product of transpositions.

Solution. τ = (1 5)(3 7)(3 4)(3 2)(6 9)(6 8).

(g) Compute sign(τ).

Solution. sign(τ) = (−1)6 = 1 [or sign(τ) = (−1)9−3 = 1].

(h) Compute |τ |.

Solution. |τ | = lcm(2, 4, 3) = 12.
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2) Decide if True or False [with justifications! ].

(a) [7 points] The set of real numbers R is a group with multiplication.

Solution. It’s False. Clearly e = 1 [the identity] and there is no x ∈ R such that x ·0 = 1.

(b) [8 points] Every infinite group has an element of infinite order.

[Hint: Every ring is a group with addition. So, we have lots of examples of groups to think
of.]

Solution. It’s False. We have that F2[x] is a group with addition [as F2[x] is a ring] and in it
every f ∈ F2[x] is such that f + f = 0 [as 2 = 0 in F2], so every non-zero element has order 2.

Also note it is infinite [as any polynomial ring], as it contains x, x2, x3, etc.

3) [15 points] Let G be a group [with multiplicative notation], m and n be positive integers such
that gcd(m,n) = 1, and x ∈ G such that xm = xn = e [where e is the identity element, i.e., the
“1” of the group]. Prove that x = e.

[Hint: Use the Extended Euclidean Algorithm [or what I call Bezout’s Theorem] for m and n.
What is then x1? [Think of two ways to find what it is. Of course, they have to be equal to each
other, even if the look different.] Also, Corollary 2.50 might come handy.]

Proof. By Bezout’s Theorem, we have that there are integers r and s such that 1 = rm + sn. So,
using Corollary 2.50 we get:

x = x1 = xrm+sn = xrm · xsn = (xm)r · (xn)s = er · es = e · e = e.

4) [15 points] Let G = Q(x, y) \ {0} [i.e., the set of rational functions on x and y and rational
coefficients, except for 0] and

H = {axmyn : a ∈ Q \ {0} and m,n ∈ Z} .

[Note that m and n can be zero or negative!] Prove that H is a subgroup of G. [Of course, G and
H are multiplicative groups, as they are not groups with respect to addition.]

Proof. First, observe that 1 ∈ H, as 1 = 1 · x0 · y0.

Now, let axmyn and bxrys, such that a, b ∈ Q \ {0} and m,n, r, s ∈ Z. Since b ∈ Q \ {0}, we have
that b−1 ∈ Q \ {0}. So,

axmyn · (bxrys)−1 = axmyn · b−1x−ry−s = (ab−1)xm−ryn−s.

Since ab−1 ∈ Q \ {0} and (m− r), (n− s) ∈ Z, we have that axmyn · (bxrys)−1 ∈ H.

Hence, H is a subgroup of G.
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5) [15 points] Let p be a prime and G be a group of order p2. Prove that G has an element of order
p.

[Hint: What are the possible orders of elements in G? What elements have order 1? You can also
use Problem 2.40 [without solving it].]

Proof. Let x ∈ G. Since p2 > 1, we may assume x 6= e [i.e., not the identity element]. Hence, we
have that |x| 6= 1. Since |x| | |G| = p2, and p is prime, we have that |x| is either p or p2. If |x| = p,
we are done. If not, then by Problem 2.40, we have that |xp| = p. So, either x or xp has order
p.
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