
Exam 3

1) [20 points] Use the Euclidean Algorithm to find the GCD of f = x7 + x6 + 2x4 + x3 + x2 + x+ 2
and g = x6 + 2x5 + x4 + x3 + x2 + 2x+ 1 in F3[x].

Solution. We have:

f = (x+ 2) · g + (x5 + 2x4 + x3 + 2x)

g = x · (x5 + 2x4 + x3 + 2x) + (x3 + 2x2 + 2x+ 1)

x5 + 2x4 + x3 + 2x = (x2 + 2) · (x3 + 2x2 + 2x+ 1) + (x2 + x+ 1)

x3 + 2x2 + 2x+ 1 = (x+ 1) · (x2 + x+ 1) + 0.

Hence, gcd(f, g) = x2 + x+ 1.

2) [20 points] Let k be a field and p1, p2, p3, p4 ∈ k[x] be monic irreducible polynomials in k[x].
Suppose that

f = a · p21 · pr2 · ps3 and g = b · pt1 · p32 · p4,

where a, b ∈ k, a, b 6= 0, and r, s and t are non-negative integers. If we know that

gcd(f, g) = p1 · p32 and lcm(f, g) = p21 · p32 · p53 · p4,

then what are r, s and t?

Solution. We have that, by the power of p1 in the GCD, that 1 = min(2, t) and hence t = 1. Also,
by the powers of p2 in the GCD and LCM, we have that min(r, 3) = max(r, 3) = 3, and thus r = 3.
Finally, by the power of p3 in the LCM, we have that 5 = max(s, 0), so s = 5.

3) [20 points] Let k be a field and f and g be distinct, monic, irreducible polynomials in k[x]. Prove
that the polynomials f2 · g3 and f3 · g2 are never equal.

[Hint: If you are having a hard time figuring out, try to see what this would say in terms of integers
instead of polynomials.]

Proof. If f2 · g3 = f3 · g2, then we would have different factorizations into irreducibles for the same
polynomial, which cannot happen.

4) Examples:
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(a) [10 points] Give an example of a domain R such that R is a subring of F2(x), but R is not a
field.

Solution. F2[x] works.

(b) [10 points] Give an example of a field F that contains C(x) properly [i.e., a field F that
contains C(x) but is different from C(x) itself].

Solution. C(x)(y) [i.e., add a new variable y and make a field of rational functions with
coefficients in C(x)] works. [This field can be simply denoted by C(x, y)]

5) Determine if the polynomials below are irreducible or not in the corresponding polynomial ring.
Justify each answer!

(a) [4 points] f = x7 + 6x6 − 27x4 + 120x3 − 3x− 15 in Q[x].

Solution. Irreducible by Eisenstein’s Criterion for p = 3.

(b) [4 points] f = x4 + x+ 1 ∈ F5[x].

Solution. By “brute force” one can check that 3 is a root. Since deg(f) > 1, the polynomial
is reducible.

(c) [4 points] f = π2 x−
√

137 in R[x].

Solution. The polynomials has degree one, so it is irreducible.

(d) [4 points] f = x6 − 5x5 − 2x4 − 4x2 + x+ 1 in Q[x].

Solution. Using the Rational Root Test we see that −1 is a root. Since deg(f) > 1, it is
reducible.

(e) [4 points] f = 304x3 + 123x2 − 34x+ 90001 in Q[x].

Solution. Reducing modulo 3 we get f̄ = x3 − x + 1̄. Now, f̄(0̄) = f̄(1̄) = f̄(2̄) = 1. So, f̄
has no roots in F3, and since deg(f̄) = 3, it is irreducible. So, f is also irreducible.
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Note: There was a typo on 5(d) in the original exam. The polynomial was: f = x6 − 5x5 − 2x4 −
3x2 + x+ 2 [in Q[x]] instead. This is much harder than what I had planned. But here is a possible
solution.

With rational root test we can see it has no rational roots: f(1) = −6, f(−1) = 2, f(2) = −136,
f(−2) = 180. So, if it factors in Q[x], no factor has degree one. So, f would then be either a product
of two [irreducible] polynomials of degree 3 or a product of polynomials of degree 4 [not necessarily
irreducible] and of degree 2 [irreducible]. [So, this takes into account that f is the product of
three irreducible polynomials of degree 2.] Moreover, by Gauss’s Lemma, the coefficients in this
factorization must be integers. [This is extremely important to the solution presented.]

Case 1: Assume it is a product of two polynomials of degree 3. Note that, without loss of generality,
we may assume both are monic. [Do you understand why we can do that?] So, let’s say:

f = (x3 + ax2 + bx+ c)(x3 + dx2 + ex+ g),

with a, b, c, d, e, g ∈ Z. Expanding and collecting terms of same power of x, we have:

x6 − 5x5 − 2x4 − 3x2 + x+ 2 =

x6 + (a+ d)x5 + (e+ ad+ b)x4 + (g + ae+ bd+ c)x3 + (ag + be+ cd)x2 + (bg + ce)x+ cg.

Comparing the coefficients we get the system:

a+ d = −5 (1)

e+ ad+ b = −2 (2)

g + ae+ bd+ c = 0 (3)

ag + be+ cd = −3 (4)

bg + ce+ d = 1 (5)

cg = 2 (6)

Now, since all the unknowns are integers, Eq. (6) gives us that either c = ±2 and g = ±1, or c = ±1
and g = ±2. Since we could switch the two polynomials [as they have the same degree], we may
assume, without loss of generality, that c = ±1 and g = ±2.

Eq. (5) gives us then that:
±2b± e = 1 =⇒ e = ±1− 2b.

Also, Eq. (1) gives us that d = −5− a. These last two, when replaced in Eq. (4), give us

±2a+ b(±1− 2b)± (−5− a) = −3 =⇒ a = ±2b2 − b+ (5± 3).

Since we have d = −5 − a, this last equation allows us to write d in terms of b only. Hence, all
unknowns can be expressed in terms of b only. Substituting these values on Eq. (4) gives us two
equations, depending on the choice of sign, namely:

2b2 + 2b+ 10 = 0 [choosing postive],

2b2 + 4b− 10 = 0 [choosing negative].

But in either case, b would not be an integer [which you can check using the quadratic formula or
rational root test]. So, this factorization is impossible!
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Case 2: Now we assume it factors as a product of polynomials of degree 4 and 2, say:

f = (x4 + ax3 + bx2 + cx+ d)(x2 + ex+ g),

with a, b, c, d, e, g ∈ Z. Expanding and collecting terms of same power of x, we have:

x6 − 5x5 − 2x4 − 3x2 + x+ 2 =

x6 + (a+ e)x5 + (g + ae+ b)x4 + (ag + be+ c)x3 + (bg + ce+ d)x2 + (cg + de)x+ dg.

Comparing the coefficients we get the system:

a+ e = −5 (7)

g + ae+ b = −2 (8)

ag + be+ c = 0 (9)

bg + ce+ d = −3 (10)

cg + de = 1 (11)

dg = 2 (12)

As before, since the unknown are integers, we have that Eq. (12) tells us that either d = ±1 and
g = ±2, or vice-versa. The problem in here is that since the degrees are different, we can’t assume
one case without loss of generality. So, we have to look at each case individually.

Subcase 2(a): d = ±2, g = ±1. Eq. (7) gives us that e = −5− a. Also, Eq. (11) gives us that

±c+±2e = 1 =⇒ c = ±1− 2e = 2a+ 10± 1.

Then, Eq. (8) gives us:

±1 + a(−5− a) + b = −2 =⇒ b = a2 + 5a− (2± 1).

So, again, we have all unknowns in terms of a. Substituting their values in Eq. (10), we get:

−a2 + 24a− 43 = 0 [choosing postive],

−3a2 + 16a− 53 = 0 [choosing negative].

But, again, in either case, a would not be an integer [which you can check using the quadratic
formula or rational root test]. So, this factorization is impossible!

Subcase 2(b): d = ±1, g = ±2. Again, Eq. (7) gives us that e = −5− a. Also, Eq. (11) now gives
us that

±2c+±e = 1 =⇒ e = ±1− 2c.

So, since e = −5− a = ±1− 2c, we get a = 2c− 5∓ 1. Then, Eq. (8) gives us:

±2 + (2c− 5∓ 1)(±1− 2c) + b = −2 =⇒ b = 4c2 − (10± 4)c± 3− 1.

So now we have all unknowns in terms of c. Substituting their values in Eq. (10), we get:

6c2 − 27c+ 8 = 0 [choosing postive],

−10c2 + 11c+ 10 = 0 [choosing negative].

But, again, in either case, c would not be an integer [which you can check using the quadratic
formula or rational root test]. So, this factorization is also impossible!
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