Exam 3

You must upload the solutions to this exam by 11:59pm on Sunday 08/06. [Note it was postponed!] Since this is a take home, I want all your solutions to be neat and well written.

You can look at class discussions on Cocalc, my videos (now allowed) and our book only (except for the hints to exercises in the back of the book)! You cannot look at solutions posted by me or any other references (including the Internet) without my previous approval. Also, of course, you cannot discuss this with anyone!

You can use a computer only to check your answers, as you need to show work in all questions.

1) [20 points] Use the Euclidean Algorithm to find the GCD of $f=x^{7}+x^{6}+2 x^{4}+x^{3}+x^{2}+x+2$ and $g=x^{6}+2 x^{5}+x^{4}+x^{3}+x^{2}+2 x+1$ in $\mathbb{F}_{3}[x]$. [Not in $\left.\mathbb{Z}[x]!\right]$
2) [20 points] Let k be a field and $p_{1}, p_{2}, p_{3}, p_{4} \in k[x]$ be monic irreducible polynomials in $k[x]$. Suppose that

$$
f=a \cdot p_{1}^{2} \cdot p_{2}^{r} \cdot p_{3}^{s} \quad \text { and } \quad g=b \cdot p_{1}^{t} \cdot p_{2}^{3} \cdot p_{4},
$$

where $a, b \in k, a, b \neq 0$, and r, s and t are non-negative integers. If we know that

$$
\operatorname{gcd}(f, g)=p_{1} \cdot p_{2}^{3} \quad \text { and } \quad \operatorname{lcm}(f, g)=p_{1}^{2} \cdot p_{2}^{3} \cdot p_{3}^{5} \cdot p_{4}
$$

then what are r, s and t ?
3) [20 points] Let k be a field and f and g be distinct monic irreducible polynomials in $k[x]$. Prove that the polynomials $f^{2} \cdot g^{3}$ and $f^{3} \cdot g^{2}$ are never equal.
[Hint: If you are having a hard time figuring out, try to see what this would say in terms of integers instead of polynomials.]
4) Examples:
(a) [10 points] Give an example of a domain R such that R is a subring of $\mathbb{F}_{2}(x)$, but R is not a field.
(b) [10 points] Give an example of a field F that contains $\mathbb{C}(x)$ properly [i.e., a field F that contains $\mathbb{C}(x)$ but is different from $\mathbb{C}(x)$ itself $]$.
5) Determine if the polynomials below are irreducible or not in the corresponding polynomial ring. Justify each answer!
(a) [4 points] $f=x^{7}+6 x^{6}-27 x^{4}+120 x^{3}-3 x-15$ in $\mathbb{Q}[x]$.
(b) [4 points] $f=x^{4}+x+1 \in \mathbb{F}_{5}[x]$.
(c) [4 points] $f=\pi^{2} x-\sqrt{137}$ in $\mathbb{R}[x]$.
(d) [4 points] $f=x^{6}-5 x^{5}-2 x^{4}-4 x^{2}+x+1$ in $\mathbb{Q}[x]$.
(e) [4 points] $f=304 x^{3}+123 x^{2}-34 x+90001$ in $\mathbb{Q}[x]$.

