Exam 2

1) [16 points] Find all the units of \mathbb{I}_{15} and for each unit, find its inverse.

Solution. We have that $[a] \in U\left(I_{15}\right)$ if and only if $(a, 15)=1$. So,

$$
U\left(I_{16}\right)=\{[1],[2],[4],[7],[8],[11],[13],[14]\} .
$$

We have:

a	$[a]^{-1}$
1	$[1]$
2	$[8]$
4	$[4]$
7	$[13]$
8	$[2]$
11	$[11]$
13	$[7]$
14	$[14]$

2) $[16$ points $]$ Prove that the only subring of \mathbb{I}_{m} is \mathbb{I}_{m} itself.

Proof. Let R be a subring of \mathbb{I}_{m}. By definition we have that $[1] \in \mathbb{I}_{m}$. Then, since R is closed under addition, we have $[1]+[1]=[2] \in R$, and then $[1]+[2]=[3] \in R$, and so on. Hence, we have that $[1],[2],[3], \ldots,[m-1],[m] \in R$. [Note $[m]=[0]$.$] So, all elements of \mathbb{I}_{m}$ are in R and hence $R=\mathbb{I}_{m}$ [since $R \subseteq \mathbb{I}_{m}$].
3) [20 points] True or False:
(a) A subring of a field is always a field.

Solution. False. We have that \mathbb{Z} is a subring of \mathbb{Q}, but it is not a field.
(b) A subring of a field is always a domain.

Solution. True. Since a field is always a domain and subrings of domains are domains, we have that subrings of fields are domains.
4) [16 points] True or False: If F is a field, then there is a domain R with $R \subseteq F$ and $R \neq F$ such that $F=\operatorname{Frac}(R)$.
[Note: Remember that $\operatorname{Frac}(R)$ denotes the field of fractions of R. Note also that it is important here that $R \neq F$, for we always have that if F is a field, then $\operatorname{Frac}(F)=F$.]

Solution. False. Since 2 is prime, we have \mathbb{I}_{2} is a field. By Problem 2, the only subring of \mathbb{I}_{2} is itself [which can also be easily verified by inspection, as $\left.\mathbb{I}_{2}=\{[0],[1]\}\right]$. So, there is no subring [at all] such that $R \subseteq \mathbb{I}_{2}$ with $R \neq \mathbb{I}_{2}$ [and hence none such that $\left.\operatorname{Frac}(R)=\mathbb{I}_{2}\right]$.
5) [16 points] Simplify:
(a) $([1]+[4] x)^{3}$ in $\mathbb{I}_{8}[x]$.

Solution.

$$
\begin{aligned}
([1]+[4] x)^{3} & =[1]^{3}+3 \cdot[1]^{2} \cdot[4] x+3 \cdot[1] \cdot[4]^{2} x^{2}+[4]^{3} x^{3} \\
& =[1]+[12] x \\
& =[1]+[4] x .
\end{aligned}
$$

(b) $\left([1] x^{2}+[1] x^{3}+[1] x^{5}\right)^{2}$ in $\mathbb{I}_{2}[x]$.

Solution.

$$
\begin{aligned}
\left([1] x^{2}+[1] x^{3}+[1] x^{5}\right)^{2}= & {[1]^{2} x^{4}+[1]^{2} x^{6}+[1]^{2} x^{10}+} \\
& 2 \cdot[1] x^{2} \cdot[1] x^{3}+2 \cdot[1] x^{2} \cdot[1] x^{5}+2 \cdot[1] x^{3} \cdot[1] x^{5} \\
= & {[1] x^{4}+[1] x^{6}+[1] x^{10} . }
\end{aligned}
$$

(c) $\left([2] x+[1] x^{4}\right)^{3}$ in $\mathbb{I}_{3}[x]$

Solution.

$$
\begin{aligned}
\left([2] x+[1] x^{4}\right)^{3} & =[2]^{3} x^{3}+3 \cdot[2]^{2} x^{2}+[1]^{2} x^{4}+3 \cdot[2] x \cdot[1]^{2} x^{8}+[1]^{3} x^{12} \\
& =[2] x^{3}+[1] x^{12} .
\end{aligned}
$$

6) $[16$ points $]$ Let R be a commutative ring. Prove that $R[x]$ is never a field.

Proof. Assume the $R[x]$ is a field. Then, since R is a subring of $R[x]$, we have that R is a domain [as seen in Problem 3]. Then, for $f, g \in R[x] \backslash\{0\}$, we have that $\operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g)$.

Now, since x is a unit [as $x \neq 0$ and $R[x]$ is a field], there is $f \in R[x]$ such that $x \cdot f=1$. But then,

$$
1+\operatorname{deg}(f)=\operatorname{deg}(x)+\operatorname{deg}(f)=\operatorname{deg}(x \cdot f)=\operatorname{deg}(1)=0
$$

But this implies that $\operatorname{deg}(f)=-1$, which is a contradiction. Thus, $R[x]$ cannot be a field.

