Exam 2

You must upload the solutions to this exam by 11:59pm on Sunday $07 / 30$. [Note it was postponed!] Since this is a take home, I want all your solutions to be neat and well written.

You can look at class discussions on Cocalc and our book only (except for the hints to exercises in the back of the book)! You cannot look at our videos, solutions posted by me or any other references (including the Internet) without my previous approval. Also, of course, you cannot discuss this with anyone!

You can use a computer only to check your answers, as you need to show work in all questions.
Note: In all "True or False" questions, you need to justify your answer. [Usually a proof if True and a counter-example if False.]

1) [16 points] Find all the units of \mathbb{I}_{15} and for each unit, find its inverse.
2) [16 points] Prove that the only subring of \mathbb{I}_{m} is \mathbb{I}_{m} itself.
3) [20 points] True or False:
(a) A subring of a field is always a field.
(b) A subring of a field is always a domain.
4) [16 points] True or False: If F is a field, then there is a domain R with $R \subseteq F$ and $R \neq F$ such that $F=\operatorname{Frac}(R)$.
[Note: Remember that $\operatorname{Frac}(R)$ denotes the field of fractions of R. Note also that it is important here that $R \neq F$, for we always have that if F is a field, then $\operatorname{Frac}(F)=F$.]
5) [16 points] Simplify:
(a) $([1]+[4] x)^{3}$ in $\mathbb{I}_{8}[x]$.
(b) $\left([1] x^{2}+[1] x^{3}+[1] x^{5}\right)^{2}$ in $\mathbb{I}_{2}[x]$.
(c) $\left([2] x+[1] x^{4}\right)^{3}$ in $\mathbb{I}_{3}[x]$
6) $[16$ points $]$ Let R be a commutative ring. Prove that $R[x]$ is never a field.
