Exam 1

1) [15 points] Use the Extended Euclidean Algorithm to write the GCD of 186 and 69 as a linear combination of themselves. Show the computations explicitly! [Hint: You should get 3 for the GCD!]

Solution. We have:

$$
\begin{aligned}
186 & =69 \cdot 2+48 \\
69 & =48 \cdot 1+21 \\
48 & =2 \cdot 21+6 \\
21 & =6 \cdot 3+3 \\
6 & =3 \cdot 2+0 .
\end{aligned}
$$

So, $\operatorname{gcd}(186,69)=3$. Now:

$$
\begin{aligned}
3 & =1 \cdot 21+(-3) \cdot 6 \\
& =1 \cdot 21+(-3) \cdot[48+(-2) \cdot 21] \\
& =7 \cdot 21+(-3) \cdot 48 \\
& =7 \cdot[68+(-1) \cdot 48]+(-3) \cdot 48 \\
& =7 \cdot 68+(-10) \cdot 48 \\
& =7 \cdot 68+(-10) \cdot[186+(-2) \cdot 69] \\
& =(-10) \cdot 186+27 \cdot 69,
\end{aligned}
$$

i.e.,

$$
3=(-10) \cdot 186+27 \cdot 69
$$

2) [13 points] Compute the LCM of 186 and 69 [the same numbers above!].

Solution. We have the $\operatorname{lcm}(186,69)=(186 \cdot 69) / \operatorname{gcd}(186,69)=(186 \cdot 69) / 3=62 \cdot 69=4278$.
3) [15 points] Let $a, b, c \in \mathbb{Z}$. Let $a, b, c \in \mathbb{Z}$. Prove that if $a \mid b$, then $a \mid(b \cdot c)$. [This is as simple as it gets! Don't make it hard!]

Proof. By definition, if $a \mid b$, then there is $k \in \mathbb{Z}$ such that $b=a \cdot k$. So, $b \cdot c=(a \cdot k) \cdot c=a \cdot(k \cdot c)$. Since, $k \cdot c \in \mathbb{Z}[$ as $k, c \in \mathbb{Z}]$, we have, by definition of divisibility, that $a \mid(b \cdot c)$.
4) [15 points] Find the remainder of the division of 674378^{584} when divided by 5. Show your computations explicitly!

Solution. Note that $674378 \equiv 3(\bmod 5)$, so $674378^{584} \equiv 3^{584}$.
Now, we write 584 in base 5:

$$
\begin{aligned}
584 & =116 \cdot 5+4, \\
116 & =23 \cdot 5+1, \\
23 & =4 \cdot 5+3, \\
4 & =0 \cdot 5+4,
\end{aligned}
$$

i.e., $584=4 \cdot 5^{0}+1 \cdot 5+3 \cdot 5^{2}+4 \cdot 5^{3}$. Hence, by Femat's Little Theorem:

$$
674378^{584} \equiv 3^{584} \equiv 3^{4+1+3+4}=3^{12} \quad(\bmod 5)
$$

Now, $12=2 \cdot 5^{0}+2 \cdot 5^{1}$, and hence:

$$
674378^{584} \equiv 3^{584} \equiv 3^{4+1+3+4}=3^{12} \equiv 3^{2+2}=3^{4}=81 \equiv 1 \quad(\bmod 5) .
$$

[Here is another way:

$$
\left.674378^{584} \equiv 3^{584} \equiv\left(3^{2}\right)^{292}=9^{292} \equiv(-1)^{292}=1 \quad(\bmod 5) .\right]
$$

5) [12 points] Let $a=2^{5} \cdot 3^{2} \cdot 11^{4} \cdot 13$ and $b=3^{2} \cdot 5 \cdot 11^{3}$.
(a) Compute the prime factorization of $\operatorname{gcd}(a, b)$.

Solution.

$$
\operatorname{gcd}(a, b)=3^{2} \cdot 11^{3} .
$$

(b) Compute the prime factorization of $\operatorname{lcm}(a, b)$.

Solution.

$$
\operatorname{lcm}(a, b)=2^{5} \cdot 3^{2} \cdot 5 \cdot 11^{4} \cdot 13
$$

6) $[15$ points $]$ Give the set of all solutions of the system

$$
\begin{array}{ll}
x \equiv 4 & (\bmod 15) \\
x \equiv 22 & (\bmod 33)
\end{array}
$$

[Hint: The system does have solution(s)!]
Solution. Note that $\operatorname{gcd}(15,33)=3$ and $3 \mid(4-22)$, so, indeed, the system has solution.
The first equation implies that $x=15 k+4$ for some $k \in \mathbb{Z}$. Substituting in the second equation, we get $15 k+4 \equiv 22(\bmod 33)$, i.e.,

$$
15 k \equiv 18 \quad(\bmod 33)
$$

Dividing by 3 [i.e., $\operatorname{gcd}(15,33)$] we get

$$
5 k \equiv 6 \quad(\bmod 11) .
$$

Now, $1=11+-2 \cdot 5$, so multiplying by -2 , we get

$$
k \equiv-12 \equiv-1 \equiv 10 \quad(\bmod 11) .
$$

Hence, $k=11 \cdot l-1$, for some $l \in \mathbb{Z}$, and thus $x=165 l-11$ [or $k=11 \cdot l+10$ and $x=165 l+154]$.
7) [15 points] Prove that there are no integers x and y such that

$$
x^{2}+y^{2}=1,000,000,000,003 .
$$

[Hint: What happens modulo 4?]
Proof. If x and y are integers satisfying the equation, then

$$
x^{2}+y^{2} \equiv 1,000,000,000,003 \equiv 3 \quad(\bmod 4)
$$

Now, modulo 4 , we have that z is congruent to either $0,1,2$ or 3 , and hence z^{2} is congruent to either 0 or $1[\operatorname{as} 4 \equiv 0(\bmod 4)$ and $9 \equiv 1(\bmod 4)]$. So, x^{2} and y^{2} are both also either 0 or 1 , and hence the possible sums are 0,1 or 2 modulo 4 , but never 3 modulo 4 . So, there can be no integers x and y such that

$$
x^{2}+y^{2} \equiv 3 \quad(\bmod 4),
$$

and hence there can be no integers x and y such that that

$$
x^{2}+y^{2}=1,000,000,000,003
$$

