Exam 1

You must upload the solutions to this exam by $11: 59 \mathrm{pm}$ on Saturday $07 / 22$. Since this is a take home, I want all your solutions to be neat and well written.
You can look at class discussions on Cocalc and our book only! You cannot look at our videos, solutions posted by me or any other references (including the Internet) without my previous approval. Also, of course, you cannot discuss this with anyone!
You can use a computer only to check your answers, as you need to show work in all questions.

1) [15 points] Use the Extended Euclidean Algorithm to write the GCD of 186 and 69 as a linear combination of themselves. Show the computations explicitly! [Hint: You should get 3 for the GCD!]
2) [13 points] Compute the LCM of 186 and 69 [the same numbers above!].
3) [15 points] Let $a, b, c \in \mathbb{Z}$. Prove that if $a \mid b$, then $a \mid(b \cdot c)$. [This is as simple as it gets! Don't make it hard!]
4) [15 points] Find the remainder of the division of 674378^{584} when divided by 5. Show your computations explicitly!
5) [12 points] Let $a=2^{5} \cdot 3^{2} \cdot 11^{4} \cdot 13$ and $b=3^{2} \cdot 5 \cdot 11^{3}$.
(a) Compute the prime factorization of $\operatorname{gcd}(a, b)$.
(b) Compute the prime factorization of $\operatorname{lcm}(a, b)$.
6) [15 points] Give the set of all solutions of the system

$$
\begin{aligned}
& x \equiv 4 \\
& x \equiv 22 \quad(\bmod 15), \\
& (\bmod 33) .
\end{aligned}
$$

[Hint: The system does have solution(s)!]
7) [15 points] Prove that there are no integers x and y such that

$$
x^{2}+y^{2}=1,000,000,000,003 .
$$

[Hint: What happens modulo 4?]

