
1) Suppose that R is a partial order on A, B1 ⊆ A, B2 ⊆ A and

∀x ∈ B1[∃y ∈ B2(xRy)] and ∀x ∈ B2[∃y ∈ B1(xRy)].

(a) Prove that if x ∈ A is an upper bound of B1, then x is also an upper bound of B2.

[The converse is also true, and the proof would very similar, but you don’t have to do

it.]

Proof. Let x be an upper bound for B1 and a ∈ B2. Then, by assumption, there is

b ∈ B1 such that aRb. Now, since x is an upper bound of B1 and b ∈ B1, we get bRx.

Since R is transitive [as R is a partial order], we get aRx. Hence, x is an upper bound

for B2.

(b) Prove that if B1 and B2 are disjoint, then B1 has no maximal element. [Again, the

same would hold for B2, but you don’t have to do it.]

Proof. Suppose x is a maximal element of B1. Then, x ∈ B1 by definition, and so

there is y ∈ B2 such that xRy [by assumption]. But, since y ∈ B2, there exists z ∈ B1

such that yRz. But this implies that xRz [by transitivity]. But since x is maximal and

z ∈ B1, we must have zRx. Since R is antisymmetric, we have that x = z. But then,

since yRz, we have yRx. Since also we had xRy, we get x = y, which is a contradiction

since x ∈ B1, y ∈ B2 and B1 ∩B2 = ∅.

2) Let F and G be partitions of A and let

H = {Z ∈P(A) | Z 6= ∅ and ∃X ∈ F [∃Y ∈ G(Z = X ∩ Y )]}

= {X ∩ Y | X ∩ Y 6= ∅, X ∈ F and Y ∈ G}.

Prove that H is also a partition of A.

Proof. First, note that by definition, no element of H is empty.

Now, let a ∈ A. Since F is a partition, there is X ∈ F such that a ∈ X. Similarly, since

G is also a partition, we have that there is Y ∈ G such that a ∈ Y . Hence, a ∈ X ∩ Y and

X ∩ Y ∈ H.
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Finally, suppose that Z,W ∈ H with Z ∩W 6= 0. Since they are in H, there are X1, X2 ∈ F
and Y1, Y2 ∈ G such that Z = X1 ∩ Y1 and W = X2 ∩ Y2. Since Z ∩ W 6= 0, let a ∈
Z ∩ W = X1 ∩ Y1 ∩ X2 ∩ Y2. In particular, a ∈ X1 ∩ X2 and since F is a partition, we

get X1 = X2. Similarly, since a ∈ Y1 ∩ Y2 and G is a partition, we get Y1 = Y2. Thus,

Z = X1 ∩ Y1 = X2 ∩ Y2 = W .

3) Let A be a non-empty set, f : A → A. Prove that if f is either a partial order or an

equivalence relation, then f is the identity function iA.

Proof. We need to show that for all a ∈ A, f(a) = a, i.e., (a, a) ∈ f . Since either a

equivalence relation or a partial order is reflexive, we get that (a, a) ∈ f .

4) Let f : A → B be an invertible function [i.e., f−1 : B → B] and R be an equivalence

relation on B. Prove that S = f−1 ◦R ◦ f is an equivalence relation on A.

[Hint: You can use, without proof, the following: (a, a′) ∈ S if there are b, b′ ∈ B such that

(a, b) ∈ f , (b, b′) ∈ R and (b′, a′) ∈ f−1.]

Proof. [Reflexive.] Let a ∈ A. Then, (a, f(a)) ∈ f . Since f(a) ∈ B and R is reflexive,

(f(a), f(a)) ∈ R. Now, since (a, f(a)) ∈ f , we have that (f(a), a) ∈ f−1. Thus, (a, a) ∈ S.

[Symmetric] Suppose that (a, a′) ∈ S. Then, there are b, b′ ∈ B such that (a, b) ∈ f ,

(b, b′) ∈ R and (b′, a′) ∈ f−1. But, this means that (b, a) ∈ f−1 and (a′, b′) ∈ f . Also, since

R is symmetric, we have that (b′, b) ∈ R. So, (a′, a) ∈ S.

[Transitive.] Suppose that (a, a′), (a′, a′′) ∈ S. Then, there are b, b′, b′′, b′′′ ∈ B such that

(a, b), (a′, b′′) ∈ f , (b, b′), (b′′, b′′′) ∈ R and (b′, a′), (b′′′, a′′) ∈ f−1. So, b = f(a), b′′ = f(a′),

bRb′, b′′Rb′′′, b′ = f(a′) and b′′′ = f(a′′). But then, b′ = f(a′) = b′′, and so bRb′′ [as bRb′′].

Since R is transitive [and b′′Rb′′′], we have bRb′′′, i.e., (b, b′′′) ∈ R. So, we have (a, b) ∈ f ,

(b, b′′′) ∈ R and (b′′′, a′′) ∈ f−1, and so (a, a′′) ∈ S.

5) Prove that for all integers n ≥ 1 we have

n∑
i=1

(2i + 1)3i = n3n+1.
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Proof. We prove it by induction on n.

[Base case.] For n = 1 we have:

(2 · 1 + 1) · 3 = 9 = 1 · 31+1.

[Induction step.] Assume now that for some n ≥ 1 we have

n∑
i=1

(2i + 1)3i = n3n+1.

Then,

n+1∑
i=1

(2i + 1)3i =

[
n∑

i=1

(2i + 1)3i

]
+ (2(n + 1) + 1)3n+1

= n3n+1 + (2n + 3)3n+1

= (n + 2n + 3)3n+1

= (n + 1) · 3 · 3n+1

= (n + 1)3n+2.

6) Prove that for all n ≥ 0 we have
2

n!
≤ 32−n.

Proof. We prove it by induction on n.

[Base cases.] For n = 0 we have 2/0! = 2 ≤ 9 = 32−0. For n = 1, we have 2/1! = 2 ≤ 3 =

32−1. For n = 2, we have 2/2! = 1 ≤ 1 = 30.

[Induction step.] Assume that for some n ≥ 2 we have 2/n! ≤ 3n−2. Then,

2

(n + 1)!
=

2

n!
· 1

n + 1
[(n + 1)! = (n + 1) · n]

≤ 32−n · 1

n + 1
[by IH]

≤ 32−n · 1

3
[as n ≥ 2]

≤ 32−n−1 = 32−(n+1).
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7) Consider the sequence a0, a1, a2, . . . given by the recursive formula:

a0 = 1

a1 = 1

an = an−1 + 2an−2, for n ≥ 2.

Prove that for all n ∈ N, we have that an = (2n+1 + (−1)n)/3.

Proof. We prove it by induction on n.

[Base cases.] We have a0 = 1 = (21 + (−1)0)/3. Also, a1 = 1 = (22 + (−1)1)/3.

[Induction step.] Assume now that from some n ≥ 1 we have that for all k ∈ {0, 1, . . . , n}
that ak = (2k+1 + (−1)k)/3. Then,

an+1 = an + 2 · an−1

=
2n+1 + (−1)n

3
+ 2 · 2n + (−1)n−1

3

=
[2n+1 + (−1)n] + 2 · [2n + (−1)n−1]

3

=
2 · 2n+1 + (−1)n + 2 · (−1)n−1

3

=
2n+2 + (−1)n−1[−1 + 2]

3

=
2n+2 + (−1)n−1

3

=
2n+2 + (−1)n+1

3
.
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