MIDTERM 1

P	Q	R	$(P \land Q) \to R$	$Q \vee \neg R$	$[\neg((P \land Q) \to R)] \to (Q \lor \neg R)$
Т	Т	Т	Т	Т	Т
Т	Т	F	F	Т	Т
Т	F	Т	Т	F	Т
Т	F	F	Т	Т	Т
F	Т	Т	Т	Т	Т
F	Т	F	Т	Т	Т
F	F	Т	Т	F	Т
F	F	F	Т	Т	Т

1) Fill in the [*incomplete*] truth-table below [read the statements carefully!]:

2) Prove or disprove: $(A \cup B) \setminus C = A \cup (B \setminus C)$.

Solution. Here are the Venn diagrams:

So, the sets are different. Let then $A = B = C = \{1\}$. Then, $(A \cup B) \setminus C = \{1\} \setminus \{1\} = \emptyset$, but $A \cup (B \setminus C) = \{1\} \setminus \emptyset = \{1\}$. So, the statement is false. \Box

3) Analyze the logical structure of the following statement: *"There are* exactly *two other people besides Alice who are as smart as she is".*

You may assume that the universe set is the set of all people, say P, so that you can write, say $\exists x(\ldots)$, instead of $\exists x \in P(\ldots)$, for "there is a person x such that...".

Solution. Let S(x, y) = "x is as smart as y" and let's denote Alice simply by A. Then,

$$\exists x \left[\exists y \left(x \neq A \land y \neq A \land y \neq x \land S(x, A) \land S(y, A) \land \forall z (S(z, A) \to (z = x \lor z = y \lor z = A)) \right) \right]$$

4) Rewrite the [nonsensical] statement below as a positive statement [so no negations before quantifiers or parentheses/brackets, but \notin and \neq are allowed]. Here the universe is \mathbb{R} [so $\exists x(\ldots)$ means $\exists x \in \mathbb{R}(\ldots)$] and I is the interval (0, 1).

$$\neg \left[\forall x \left[(x \in I \lor x > 10) \leftrightarrow (\exists y (x \cdot y = 1)) \right] \right]$$

Solution. We have:

$$\neg \left[\forall x \left[(x \in I \lor x > 10) \leftrightarrow (\exists y (x \cdot y = 1)) \right] \right]$$

$$\sim \exists x \neg \left[(x \in I \lor x > 10) \leftrightarrow (\exists y (x \cdot y = 1)) \right]$$

$$\sim \exists x \left[\left[\neg (x \in I \lor x > 10) \land (\exists y (x \cdot y = 1)) \right] \lor \left[(x \in I \lor x > 10) \land \neg (\exists y (x \cdot y = 1)) \right] \right]$$

$$\sim \exists x \left[\left[(x \notin I \land x \le 10) \land (\exists y (x \cdot y = 1)) \right] \lor \left[(x \in I \lor x > 10) \land (\forall y (x \cdot y \ne 1)) \right] \right] .$$

	- 1
	1
	- 1
	- 1

5) Let \mathcal{F} be a family of sets and A be a set. Rewrite the statement

$$\bigcup \mathcal{F} \subseteq \bigcap \mathscr{P}(A),$$

without using \subseteq , $\not\subseteq$, \mathscr{P} , \cup , \cap , \setminus , $\{$, $\}$ or \neg . [You may use \in , \notin , =, \neq , \wedge , \vee , \rightarrow , \forall and \exists , though.]

Solution.

$$\begin{split} \bigcup \mathcal{F} &\subseteq \bigcap \mathscr{P}(A) \sim \forall x \in \bigcup \mathcal{F}(x \in \bigcap \mathscr{P}(A)) \\ &\sim \forall x \left[(x \in \bigcup \mathcal{F}) \to (x \in \bigcap \mathscr{P}(A)) \right] \\ &\sim \forall x \left[(\exists X \in \mathcal{F}(x \in X)) \to (\forall Y \in \mathscr{P}(A)(x \in Y)) \right] \\ &\sim \forall x \left[(\exists X \in \mathcal{F}(x \in X)) \to (\forall Y(Y \in \mathscr{P}(A) \to x \in Y)) \right] \\ &\sim \forall x \left[(\exists X \in \mathcal{F}(x \in X)) \to (\forall Y(Y \subseteq A \to x \in Y)) \right] \\ &\sim \forall x \left[(\exists X \in \mathcal{F}(x \in X)) \to (\forall Y((\forall y \in Y(y \in A)) \to x \in Y)) \right] \end{split}$$

6) Let A and B be sets. Prove that $A \setminus (A \setminus B) = A \cap B$.

Proof. Let $x \in A \setminus (A \setminus B)$. Then, $x \in A$ and $x \notin A \setminus B$. The latter means that either $x \notin A$ or $x \in B$. But, we do have that $x \in A$, so we must have $x \in B$, and hence $x \in A \cap B$. Therefore, we have $A \setminus (A \setminus B) \subseteq A \cap B$.

Now let $x \in A \cap B$. Then, we have that $x \in A$ and $x \in B$. In particular, $x \in A$. Also, since $x \in B$, clearly $x \notin A \setminus B$. So, since $x \in A$ and $x \notin A \setminus B$, we get that $x \in A \setminus (A \setminus B)$. Thus, we've proved that $A \setminus (A \setminus B) \supseteq A \cap B$. Since we had already the other inclusion, we get the equality.

7) Let \mathcal{F} and \mathcal{G} be non-empty families of sets. Prove that $\bigcup \mathcal{F}$ and $\bigcup \mathcal{G}$ are disjoint iff for every $A \in \mathcal{F}$ and every $B \in \mathcal{G}$ we have that A and B are disjoint.

Proof. $[\rightarrow]$ Suppose that $\bigcup \mathcal{F} \cap \bigcup \mathcal{G} = \emptyset$ and let $A \in \mathcal{F}$ and $B \in \mathcal{G}$. Suppose that there is $x \in A \cap B$. [So, we should derive a contradiction.] Since $x \in A$ and $A \in \mathcal{F}$, we have [by definition of the union of a family of sets] that $x \in \bigcup \mathcal{F}$. Similarly, since $x \in B$ and $B \in \mathcal{G}$, we have that $x \in \bigcup \mathcal{G}$. Thus, $x \in \bigcup \mathcal{F} \cap \bigcup \mathcal{G}$, a contradiction [as $\bigcup \mathcal{F} \cap \bigcup \mathcal{G} = \emptyset$].

 $[\leftarrow]$ Now assume that for every $A \in \mathcal{F}$ and every $B \in \mathcal{G}$ we have that A and B are disjoint. Suppose that there is $x \in \bigcup \mathcal{F} \cap \bigcup \mathcal{G}$. Thus, $x \in \bigcup \mathcal{F}$ and $x \in \bigcup \mathcal{G}$. The former says that there is $A \in \mathcal{F}$ such that $x \in A$, while the latter says that there is $B \in \mathcal{G}$ such that $x \in B$. But then $x \in A \cap B = \emptyset$ [by assumption], a contradiction. \Box 8) Let U be a non-empty set. Prove that for every $A \in \mathscr{P}(U)$, there is a unique $B \in \mathscr{P}(U)$ such that for every $C \in \mathscr{P}(U)$ we have $C \setminus A = C \cap B$. [Don't let the $\mathscr{P}(U)$ intimidate you. U here is just "the universe", i.e., all sets in here are contained in this U.]

Proof. [Existence.] Given $A \subseteq U$, let $B = (U \setminus A)$. Then, given $C \subseteq U$, we have that $C \setminus A = C \cap B$ [needs proof!]: let $x \in C \setminus A$. Then, $x \in C$ and $x \notin A$. Since $C \subseteq U$, we have that $x \in U$. Since $x \notin A$, we have that $x \in U \setminus A = B$. Since also $x \in C$, we get $x \in C \cap B$. Conversely, if $x \in C \cup B = C \cup (U \setminus A)$, then $x \in C$ and $x \in U \setminus A$. The last one tells us that $[x \in U \text{ and}] x \notin A$. Since $x \in C$ also, we have that $x \in C \setminus A$.

[Uniqueness.] Suppose that B' has the same property as $B = U \setminus A$ [for a given A]. [We need to prove that B' = B.] Then, taking C = U, we have that $U \setminus A = U \cap B' = B'$ [since $B' \subseteq U$.] So, $B = U \setminus A = B'$.

_		