Midterm 1

1) Fill in the [incomplete] truth-table below [read the statements carefully!]:

P	Q	R	$(P \wedge Q) \rightarrow R$	$Q \vee \neg R$	$[\neg((P \wedge Q) \rightarrow R)] \rightarrow(Q \vee \neg R)$
T	T	T	T	T	T
T	T	F	F	T	T
T	F	T	T	F	T
T	F	F	T	T	T
F	T	T	T	T	T
F	T	F	T	T	T
F	F	T	T	F	T
F	F	F	T	T	T

2) Prove or disprove: $(A \cup B) \backslash C=A \cup(B \backslash C)$.

Solution. Here are the Venn diagrams:

So, the sets are different. Let then $A=B=C=\{1\}$. Then, $(A \cup B) \backslash C=\{1\} \backslash\{1\}=\varnothing$, but $A \cup(B \backslash C)=\{1\} \backslash \varnothing=\{1\}$. So, the statement is false.
3) Analyze the logical structure of the following statement: "There are exactly two other people besides Alice who are as smart as she is".
You may assume that the universe set is the set of all people, say P, so that you can write, say $\exists x(\ldots)$, instead of $\exists x \in P(\ldots)$, for "there is a person x such that...".

Solution. Let $S(x, y)=$ " x is as smart as y " and let's denote Alice simply by A. Then,
$\exists x[\exists y(x \neq A \wedge y \neq A \wedge y \neq x \wedge S(x, A) \wedge S(y, A) \wedge \forall z(S(z, A) \rightarrow(z=x \vee z=y \vee z=A)))]$
4) Rewrite the [nonsensical] statement below as a positive statement [so no negations before quantifiers or parentheses/brackets, but \notin and \neq are allowed]. Here the universe is \mathbb{R} [so $\exists x(\ldots)$ means $\exists x \in \mathbb{R}(\ldots)]$ and I is the interval $(0,1)$.

$$
\neg[\forall x[(x \in I \vee x>10) \leftrightarrow(\exists y(x \cdot y=1))]]
$$

Solution. We have:

$$
\begin{aligned}
\neg & {[\forall x[(x \in I \vee x>10) \leftrightarrow(\exists y(x \cdot y=1))]] } \\
& \sim \exists x \neg[(x \in I \vee x>10) \leftrightarrow(\exists y(x \cdot y=1))] \\
& \sim \exists x[[\neg(x \in I \vee x>10) \wedge(\exists y(x \cdot y=1))] \vee[(x \in I \vee x>10) \wedge \neg(\exists y(x \cdot y=1))]] \\
& \sim \exists x[[(x \notin I \wedge x \leq 10) \wedge(\exists y(x \cdot y=1))] \vee[(x \in I \vee x>10) \wedge(\forall y(x \cdot y \neq 1))]] .
\end{aligned}
$$

5) Let \mathcal{F} be a family of sets and A be a set. Rewrite the statement

$$
\bigcup \mathcal{F} \subseteq \bigcap \mathscr{P}(A)
$$

without using $\subseteq, \nsubseteq, \mathscr{P}, \cup, \cap, \backslash,\{$,$\} or \neg .[$ You may use $\in, \notin,=, \neq, \wedge, \vee, \rightarrow, \forall$ and \exists, though.]

Solution.

$$
\begin{aligned}
\bigcup \mathcal{F} \subseteq \bigcap \mathscr{P}(A) & \sim \forall x \in \bigcup \mathcal{F}(x \in \bigcap \mathscr{P}(A)) \\
& \sim \forall x[(x \in \bigcup \mathcal{F}) \rightarrow(x \in \bigcap \mathscr{P}(A))] \\
& \sim \forall x[(\exists X \in \mathcal{F}(x \in X)) \rightarrow(\forall Y \in \mathscr{P}(A)(x \in Y))] \\
& \sim \forall x[(\exists X \in \mathcal{F}(x \in X)) \rightarrow(\forall Y(Y \in \mathscr{P}(A) \rightarrow x \in Y))] \\
& \sim \forall x[(\exists X \in \mathcal{F}(x \in X)) \rightarrow(\forall Y(Y \subseteq A \rightarrow x \in Y))] \\
& \sim \forall x[(\exists X \in \mathcal{F}(x \in X)) \rightarrow(\forall Y((\forall y \in Y(y \in A)) \rightarrow x \in Y))]
\end{aligned}
$$

6) Let A and B be sets. Prove that $A \backslash(A \backslash B)=A \cap B$.

Proof. Let $x \in A \backslash(A \backslash B)$. Then, $x \in A$ and $x \notin A \backslash B$. The latter means that either $x \notin A$ or $x \in B$. But, we do have that $x \in A$, so we must have $x \in B$, and hence $x \in A \cap B$. Therefore, we have $A \backslash(A \backslash B) \subseteq A \cap B$.
Now let $x \in A \cap B$. Then, we have that $x \in A$ and $x \in B$. In particular, $x \in A$. Also, since $x \in B$, clearly $x \notin A \backslash B$. So, since $x \in A$ and $x \notin A \backslash B$, we get that $x \in A \backslash(A \backslash B)$. Thus, we've proved that $A \backslash(A \backslash B) \supseteq A \cap B$. Since we had already the other inclusion, we get the equality.
7) Let \mathcal{F} and \mathcal{G} be non-empty families of sets. Prove that $\bigcup \mathcal{F}$ and $\bigcup \mathcal{G}$ are disjoint iff for every $A \in \mathcal{F}$ and every $B \in \mathcal{G}$ we have that A and B are disjoint.

Proof. [\rightarrow] Suppose that $\bigcup \mathcal{F} \cap \bigcup \mathcal{G}=\varnothing$ and let $A \in \mathcal{F}$ and $B \in \mathcal{G}$. Suppose that there is $x \in A \cap B$. [So, we should derive a contradiction.] Since $x \in A$ and $A \in \mathcal{F}$, we have [by definition of the union of a family of sets] that $x \in \bigcup \mathcal{F}$. Similarly, since $x \in B$ and $B \in \mathcal{G}$, we have that $x \in \bigcup \mathcal{G}$. Thus, $x \in \bigcup \mathcal{F} \cap \bigcup \mathcal{G}$, a contradiction [as $\bigcup \mathcal{F} \cap \bigcup \mathcal{G}=\varnothing$].
$[\leftarrow]$ Now assume that for every $A \in \mathcal{F}$ and every $B \in \mathcal{G}$ we have that A and B are disjoint. Suppose that there is $x \in \bigcup \mathcal{F} \cap \bigcup \mathcal{G}$. Thus, $x \in \bigcup \mathcal{F}$ and $x \in \bigcup \mathcal{G}$. The former says that there is $A \in \mathcal{F}$ such that $x \in A$, while the latter says that there is $B \in \mathcal{G}$ such that $x \in B$. But then $x \in A \cap B=\varnothing$ [by assumption], a contradiction.
8) Let U be a non-empty set. Prove that for every $A \in \mathscr{P}(U)$, there is a unique $B \in \mathscr{P}(U)$ such that for every $C \in \mathscr{P}(U)$ we have $C \backslash A=C \cap B$. [Don't let the $\mathscr{P}(U)$ intimidate you. U here is just "the universe", i.e., all sets in here are contained in this U.]

Proof. [Existence.] Given $A \subseteq U$, let $B=(U \backslash A)$. Then, given $C \subseteq U$, we have that $C \backslash A=C \cap B$ [needs proof!]: let $x \in C \backslash A$. Then, $x \in C$ and $x \notin A$. Since $C \subseteq U$, we have that $x \in U$. Since $x \notin A$, we have that $x \in U \backslash A=B$. Since also $x \in C$, we get $x \in C \cap B$. Conversely, if $x \in C \cup B=C \cup(U \backslash A)$, then $x \in C$ and $x \in U \backslash A$. The last one tells us that $[x \in U$ and $] x \notin A$. Since $x \in C$ also, we have that $x \in C \backslash A$.
[Uniqueness.] Suppose that B^{\prime} has the same property as $B=U \backslash A$ [for a given A]. [We need to prove that $B^{\prime}=B$.] Then, taking $C=U$, we have that $U \backslash A=U \cap B^{\prime}=B^{\prime}$ [since $B^{\prime} \subseteq U$.] So, $B=U \backslash A=B^{\prime}$.

