Midterm (Take Home)

You must upload the solutions to this exam by $11: 59 \mathrm{pm}$ on Tuesday $06 / 16$. Since this is a take home, I want all your solutions to be neat and well written.

You can look at your notes, class discussions on SMC, our book, our videos and solutions posted by me, but you cannot look at any other references (including the Internet) and you cannot discuss this with anyone!

You can use a computer only to check your answers, as you need to show work in all questions.

1) [15 points] Use the Extended Euclidean Algorithm to write the GCD of 1183 and 826 as a linear combination of themselves. Show the computations explicitly! [Hint: You should get 7 for the GCD!]

Solution. We have:

$$
\begin{aligned}
1138 & =826 \cdot 1+357 \\
826 & =357 \cdot 2+112 \\
357 & =112 \cdot 3+21 \\
112 & =21 \cdot 5+7 \\
21 & =7 \cdot 3 .
\end{aligned}
$$

So $\operatorname{gcd}(1138,357)=7$. Now,

$$
\begin{aligned}
7 & =112-5 \cdot 21 \\
& =112-5 \cdot(357-3 \cdot 112)=-5 \cdot 357+16 \cdot 112 \\
& =-5 \cdot 357+16 \cdot(826-2 \cdot 357)=16 \cdot 826-37 \cdot 357 \\
& =16 \cdot 826-37 \cdot(1138-826)=-37 \cdot 1138+53 \cdot 826
\end{aligned}
$$

2) [13 points] Compute the LCM of 1183 and 826 [the same numbers above!].

Solution. We have:

$$
\begin{aligned}
\operatorname{lcm}(1183,826) & =\frac{1183 \cdot 826}{\operatorname{gcd}(1183,826)} \\
& =\frac{1183 \cdot 826}{7} \\
& =169 \cdot 826=139594 .
\end{aligned}
$$

3) [15 points] Find the remainder of the division of 9482^{1532} when divided by 5 [i.e., what is 9482^{1532} congruent to modulo 5]. Show your computations explicitly!

Solution. We have:

$$
\begin{aligned}
1532 & =5 \cdot 306+2 \\
306 & =5 \cdot 61+1 \\
61 & =5 \cdot 12+1 \\
12 & =5 \cdot 2+2 \\
2 & =5 \cdot 0+2 .
\end{aligned}
$$

So, $1532=2+1 \cdot 5+1 \cdot 5^{2}+2 \cdot 5^{3}+2 \cdot 5^{4}$. Also, note that $2+1+1+2+2=8=3+1 \cdot 5$.
Thus, using Fermat's Theorem, we have:

$$
9482^{1532} \equiv 2^{15432} \equiv 2^{2+1+1+2+2}=2^{8} \equiv 2^{3+1}=2^{4}=16 \equiv 1 \quad(\bmod 5) .
$$

4) [15 points] Give the set of all solutions of the system

$$
\begin{array}{ll}
4 x \equiv 5 & (\bmod 15) \\
5 x & \equiv 22
\end{array} \quad(\bmod 33)
$$

[Hint: The system does have solution(s)!]

Solution. We first clear the coefficients of x : we have that $4 \cdot 4 \equiv 1(\bmod 15)$, so the first equation becomes:

$$
x \equiv 20 \equiv 5 \quad(\bmod 5)
$$

Also, we have that $-13 \cdot 5=-65 \equiv 1(\bmod 33)$. [We can find this using the Extended Euclidean Algorithm.] So, the second equation becomes:

$$
x \equiv-286 \equiv 11 \quad(\bmod 33) .
$$

So, we have the system:

$$
\begin{array}{ll}
x \equiv 5 & (\bmod 15) \\
x \equiv 11 & (\bmod 33) .
\end{array}
$$

Since $\operatorname{gcd}(15,33)=3$ and $3 \mid(5-11)$, we know that the system has solution.
From the first equation, we have that $x=5+15 \cdot k$, for $k \in \mathbb{Z}$. Substituting in the second we get $5+15 k \equiv 11(\bmod 33)$, or $15 k \equiv 6(\bmod 33)$. Now, we have $\operatorname{gcd}(15,33)=3$ and $3 \mid 6$, so we divide through by 3 , and get $5 k \equiv 2(\bmod 11)$. Since $-2 \cdot 5=-10 \equiv 1(\bmod 11)$, we get $k \equiv-4 \equiv 7$ $(\bmod 11)$. Thus, $k=7+11 l$, for $l \in \mathbb{Z}$.

Replacing this back in the formula for x, we get $x=5+15 \cdot(7+11 \cdot l)=110+165 \cdot l$, for $l \in \mathbb{Z}$, which is our solution set.
5) [12 points] Suppose that

$$
\begin{aligned}
m & =2^{a} \cdot 3^{2} \cdot 5^{b} \cdot 7^{3} \\
n & =2^{5} \cdot 3^{c} \cdot 5^{4} \cdot 7^{d}, \\
\operatorname{gcd}(m, n) & =2^{5} \cdot 3^{2} \cdot 5 \cdot 7^{2}, \\
\operatorname{lcm}(n, m) & =2^{7} \cdot 3^{2} \cdot 5^{4} \cdot 7^{3} .
\end{aligned}
$$

Find a, b, c and d.

Solution. By the formulas for GCD and LCM using the Fundamental Theorem of Arithmetic, we have [for the prime 2] that $5=\min (a, 5)$ and $7=\max (a, 5)$, so $a=7$.

Similarly, for the prime 3, we have that $2=\min (2, c)$ and $2=\max (2, c)$, and hence $c=2$.
For the prime 5 , we have that $1=\min (b, 4)$ and $4=\max (b, 4)$, and hence $c=1$.
Finally, for the prime 7 , we have that $2=\min (3, d)$ and $3=\max (3, d)$, and hence $d=2$.
6) [15 points] Let a, b and c be positive integers and suppose that there are $r, s, t \in \mathbb{Z}$ such that

$$
r a+s b+t c=1
$$

Prove that $\operatorname{gcd}(a, b, c)=1$.
Solution. Let $d \stackrel{\text { def }}{=} \operatorname{gcd}(a, b, c)$. Since $d \mid a$, we also have that $d \mid r a$. Similarly, since $d \mid b, c$, we also have that $d \mid(s b),(t c)$. Thus, $d \mid(r a+s b+t c)=1$. Since $d>0$ and a divisor of 1 , we must have that $d=1$.
7) [15 points] Let p be a prime. Prove that for any integer a such that $p \nmid a$, the equation $x^{p}-x+a=0$ never has an integral [i.e., in \mathbb{Z}] solution.
[Hint: As I've mentioned before, if an equation has an integral solution, it has a solution modulo any m.]

Proof. By Fermat's Theorem, for any $b \in \mathbb{Z}$, we have, since p is prime, that

$$
b^{p} \equiv b \quad(\bmod p)
$$

So, if b is an integral solution of the equation, we have

$$
0=b^{p}-b+a \equiv b-b+a=a \quad(\bmod p)
$$

i.e., $a \equiv 0(\bmod p)$. Thus, this would mean that $p \mid a$, which is not the case. So the equation cannot have an integral solution. [If it did, then we would have $p \mid a$.]

