Final

M460 - Geometry

July 3rd, 2012

1. [This is the homework from yesterday.] Assume we have two circles, with centers O and O^{\prime} and same radius, say $O R$, which intersect in two distinct points, say P^{\prime} and P. Let B be the midpoint of $O O^{\prime}$ and l be the line through B perpendicular to $\overleftrightarrow{O O^{\prime}}$. Assuming that P and P^{\prime} are in opposite sides of $\overleftrightarrow{O O^{\prime}}$, show that $P, P^{\prime} \in l$. You cannot use any continuity principle! [I.e., no Circle-Circle, Line-Circle, Segment-Circle, Dedekind's Axiom, etc.] Note that we do not know, at least at first, if B, P and P^{\prime} are colinear [as the picture seems to indicate], so don't use it!
[Hint: Melinda was on the right track. Use congruence of triangles to show that $\overleftrightarrow{P P^{\prime}} \perp \overleftrightarrow{O O^{\prime}}$ and $B \in \overleftrightarrow{P P^{\prime}}$. This should help!]

Continue on next page!
2. Show by giving explicit counterexamples [well drawn pictures, preferably explicitly specifying the radii and centers of circles] that the following statements of Euclidean Geometry do not hold in the upper half plane (UHP).

(a) "There can be no line entirely contained in the interior of angle."

(b) Remember that circles in the UHP are Euclidean circles entirely contained in the upper half plane [but the real center is below the Euclidean center]. "Given three non-colinear points, there is a circle passing through all of them."
[Hint: There are a couple of different ways to do this. Given three non-colinear points on the UHP, if there is a [non-Euclidean] circle through them, then it is also an Euclidean circle through them entirely contained in the UHP. So, if there is no circle through the three non-colinear points, then either there is an Euclidean circle through the points, but it is not contained in the UHP, or there is no [Euclidean] circle at all through the three points.]
3. Consider the distorted model of Problem 35 on pg. 152 [presented in the second project yesterday], where distances on the x-axis are twice as long as they are in the usual \mathbb{R}^{2} model. [Everything else is the same.]
(a) Give an example of a triple (x, y, z) which represents the lengths of three sides of a triangle that exists only if one of its sides is on the x-axis. [Hint: Triangle Inequality on pg. 171.]
(b) Give examples [with pictures] of rays $\overrightarrow{A B}$ and $\overrightarrow{C D}$ and a circle γ, such that A and C in the interior of $\gamma, \overrightarrow{A B}$ does not intersect γ and $\overrightarrow{C D}$ intersects γ in exactly two points.
4. Prove that Hilbert's Euclidean Parallel Postulate is equivalent to the transitivity of parallels, i.e., "if $l \| m$ and $m \| n$, then $l \| n$ ".
[Hint: Use Proposition 4.7. In other words, it suffices to show that transitivity of parallels is equivalent to "if $l \| m$ and t intersects l, then t also intersects m ".]

