- 1) Let $\mathbf{v} = (1, 2, 0, 3)$ and $\mathbf{w} = (0, 1, 2, 1)$. Find:
 - (a) [5 points] the cosine of the angle θ between **v** and **w** [no need to simplify the number]: Solution.

$$\cos(\theta) = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|} = \frac{5}{\sqrt{14}\sqrt{6}}.$$

(b) [5 points] the projection of \mathbf{v} on the direction of \mathbf{w} :

Solution.

$$\operatorname{proj}_{\mathbf{w}}(\mathbf{v}) = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|^2} \mathbf{w} = \frac{5}{6}(0, 1, 2, 1) = \left(0, \frac{5}{6}, \frac{5}{3}, \frac{5}{6}\right).$$

(c) [5 points] the component of \mathbf{v} orthogonal to \mathbf{w} :

$$\mathbf{v} - \operatorname{proj}_{\mathbf{w}}(\mathbf{v}) = (1, 2, 0, 3) - \left(0, \frac{5}{6}, \frac{5}{3}, \frac{5}{6}\right) = \left(1, \frac{7}{6}, -\frac{5}{3}, \frac{13}{6}\right).$$

2) [10 points] Let $\mathbf{v}_1 = (1, 2, 1)$, $\mathbf{v}_2 = (0, 1, 1)$, and $S = {\mathbf{v}_1, \mathbf{v}_2}$. Is $\mathbf{v} = (2, 3, 1)$ in span(S)? How about $\mathbf{w} = (1, 0, 0)$? For each affirmative answer, write the corresponding vector a linear combination of \mathbf{v}_1 and \mathbf{v}_2 .

Solution. We have

$$\begin{bmatrix} 1 & 0 & 2 & | & 1 \\ 2 & 1 & 3 & 0 \\ 1 & 1 & | & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 & | & 1 \\ 0 & 1 & -1 & -2 \\ 0 & 1 & -1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & | & 2 & | & 1 \\ 0 & 1 & -1 & | & -2 \\ 0 & 0 & 0 & | & 1 \end{bmatrix}.$$

So, $\mathbf{v} \in \text{span}(S)$ and $\mathbf{v} = 2\mathbf{v}_1 - \mathbf{v}_2$, but \mathbf{w} is not.

1

3) [15 points] Is $S_1 = \{1 + x, -1 + x\}$ a basis of P_1 ? [Remember that P_1 is the vector space of polynomials of degree at most 1.] How about $S_2 = \{1, x, 1+x\}$?

Solution. S_2 is not a basis, as dim $P_1 = 2$ and S_2 has three vectors. Since S_1 has the correct number of vectors [equal to the dimension] it suffices to check if S_1 is linearly independent. But, $k_1(1+x) + k_2(-1+x) = 0$ gives the following linear system:

$$\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Since the coefficient matrix has determinant $2 \neq 0$, the system has only the trivial solution. Therefore, S_1 is linearly independent and thus a basis.

4) Change of basis:

(a) [10 points] Let $B = \{(2, 1), (1, 1)\}$ and $B' = \{(1, 1), (0, 1)\}$. Give the transition matrix $P_{B \to B'}$.

Solution.

Solution.

$$\begin{bmatrix} 1 & 0 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -1 & 0 \end{bmatrix}.$$
So,

$$P_{B \to B'} = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}.$$

_	

(b) [5 points] Let B and B' be bases of a vector space V, with transition matrix

$$P_{B \to B'} = \left[\begin{array}{cc} 1 & 1\\ 2 & -1 \end{array} \right].$$

Then, if $[\mathbf{v}]_B = (-1, 2)$, find $[\mathbf{v}]_{B'}$.

Solution.

$$[\mathbf{v}]_{B'} = P_{B \to B'} \cdot [\mathbf{v}]_B = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$$

5) Let $\mathbf{v}_1 = (1, 0, 3, -1, 0)$, $\mathbf{v}_2 = (0, 1, 2, 1, 0)$, and $\mathbf{v}_3 = (2, -1, 4, -3, 1)$. Find a basis for the orthogonal complement of span($\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$).

Solution. The orthogonal complement is the nullspace of the matrix with the \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 as rows. Thus, we have:

$$\begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 3 & -1 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 2 & -1 & 4 & -3 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & -1 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & -1 & -2 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & -1 & 0 \\ 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Solving we get $(x_1, x_2, x_3, x_4, x_5) = (-3s+t, -2s-t, s, t, 0) = s(-3, -2, 1, 0, 0) + t(1, -1, 0, 1, 0)$. So, a basis is: $\{(-3, -2, 1, 0, 0), (1, -1, 0, 1, 0)\}$. 6) Let

$$\mathbf{v}_{1} = (-3, -3, -7, -34, -11, 3, -33),$$

$$\mathbf{v}_{2} = (2, 2, 4, 20, 6, -2, 20),$$

$$\mathbf{v}_{3} = (1, 1, 2, 10, 3, -1, 10),$$

$$\mathbf{v}_{4} = (2, 2, 5, 24, 8, -1, 21),$$

$$\mathbf{v}_{5} = (-1, -1, -4, -18, -7, -1, -12),$$

and $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5}$, and $V = \operatorname{span}(S)$. Given that

and

answer the questions below. [You do not need to justify any of the items below.]

(a) [4 points] What are the dimension of V and V^{\perp} [the orthogonal complement of V in \mathbb{R}^{7}]?

Solution. They are 3 [rank of the first matrix] and 4 [nullity of the first matrix] respectively. $\hfill \Box$

(b) [4 points] Find a basis for V made of elements of S.

Solution. We can take $B = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4}.$

(c) [3 points] Find the coordinates of \mathbf{v}_2 and \mathbf{v}_5 with respect to the basis you've found in item (b).

Solution. We have
$$[\mathbf{v}_2]_B = (0, 1, 0)$$
 and $[\mathbf{v}_5]_B = (0, 3/2, -2)$.

(d) [3 points] Which vectors from the standard basis of \mathbb{R}^7 can you add to the vectors in the basis of V you've in (b) to obtain a basis of all of \mathbb{R}^7 ?

Solution. $\mathbf{e}_2, \, \mathbf{e}_4, \, \mathbf{e}_5, \, \mathbf{e}_7.$

7) [15 points] Let V be the set of all polynomial of the form $a_0 + a_1x + (a_0 + a_1)x^2$, where $a_0, a_1 \in \mathbb{R}$. [In other words, polynomials of degree at most two, whose coefficient of x^2 is the sum of the coefficient of x and free coefficient.] Show that V is a vector space.

Solution. Since V is a subset of a vector space [namely, P_2], we only need to check that $0 \in V$ and axiom 0 from the list at the end. Clearly, $0 \in V$, by taking $a_0 = a_1 = 0$. Also, if $a_0 + a_1x + (a_0 + a_1)x^2$, $b_0 + b_1x + (b_0 + b_1)x^2 \in V$, then:

$$(a_0 + a_1x + (a_0 + a_1)x^2) + (b_0 + b_1x + (b_0 + b_1)x^2) = (a_0 + b_0) + (a_1 + b_1)x + ((a_0 + b_0) + (a_1 + b_1))x^2,$$

and hence the sum is in V.

Finally, if $a_0 + a_1 x + (a_0 + a_1) x^2 \in V$ and $k \in \mathbb{R}$, then:

$$k(a_0 + a_1x + (a_0 + a_1)x^2) = (ka_0) + (ka_1)x + (ka_0 + ka_1)x^2,$$

and hence the scalar product is in V.

Vector Space Axioms

A non-empty set V with a sum and a scalar product is a vector space if it satisfies the following conditions:

- 0. $\mathbf{u} + \mathbf{v} \in V$ for all $\mathbf{u}, \mathbf{v} \in V$, and $k\mathbf{u} \in V$ for all $\mathbf{u} \in V$ and $k \in \mathbb{R}$;
- 1. $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ for all $\mathbf{u}, \mathbf{v} \in V$;
- 2. $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$;
- 3. there is $\mathbf{0} \in V$ such that $\mathbf{0} + \mathbf{u} = \mathbf{u}$ for all $\mathbf{u} \in V$;
- 4. given $\mathbf{u} \in V$, there exists $-\mathbf{u} \in V$ such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$;
- 5. $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$ for all $\mathbf{u}, \mathbf{v} \in V$ and $k \in \mathbb{R}$;
- 6. $(k+l)\mathbf{u} = k\mathbf{u} + l\mathbf{u}$ for all $\mathbf{u} \in V$ and $k, l \in \mathbb{R}$;
- 7. $k(l\mathbf{u}) = (kl)\mathbf{u}$ for all $\mathbf{u} \in V$ and $k, l \in \mathbb{R}$;
- 8. $1\mathbf{u} = \mathbf{u}$ for all $\mathbf{u} \in V$.