1) Let $\mathbf{v}=(1,2,0,3)$ and $\mathbf{w}=(0,1,2,1)$. Find:
(a) [5 points] the cosine of the angle θ between \mathbf{v} and \mathbf{w} [no need to simplify the number]:

Solution.

$$
\cos (\theta)=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}=\frac{5}{\sqrt{14} \sqrt{6}} .
$$

(b) [5 points] the projection of \mathbf{v} on the direction of \mathbf{w} :

Solution.

$$
\operatorname{proj}_{\mathbf{w}}(\mathbf{v})=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|^{2}} \mathbf{w}=\frac{5}{6}(0,1,2,1)=\left(0, \frac{5}{6}, \frac{5}{3}, \frac{5}{6}\right) .
$$

(c) [5 points] the component of \mathbf{v} orthogonal to \mathbf{w} :

$$
\mathbf{v}-\operatorname{proj}_{\mathbf{w}}(\mathbf{v})=(1,2,0,3)-\left(0, \frac{5}{6}, \frac{5}{3}, \frac{5}{6}\right)=\left(1, \frac{7}{6},-\frac{5}{3}, \frac{13}{6}\right) .
$$

2) [10 points] Let $\mathbf{v}_{1}=(1,2,1), \mathbf{v}_{2}=(0,1,1)$, and $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. Is $\mathbf{v}=(2,3,1)$ in $\operatorname{span}(S)$? How about $\mathbf{w}=(1,0,0)$? For each affirmative answer, write the corresponding vector a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}.

Solution. We have

$$
\left[\begin{array}{ll|l|l}
1 & 0 & 2 & 1 \\
2 & 1 & 3 & 0 \\
1 & 1 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ll|r|r}
1 & 0 & 2 & 1 \\
0 & 1 & -1 & -2 \\
0 & 1 & -1 & -1
\end{array}\right] \sim\left[\begin{array}{rr|r|r}
1 & 0 & 2 & 1 \\
0 & 1 & -1 & -2 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

So, $\mathbf{v} \in \operatorname{span}(S)$ and $\mathbf{v}=2 \mathbf{v}_{1}-\mathbf{v}_{2}$, but \mathbf{w} is not.
3) [15 points] Is $S_{1}=\{1+x,-1+x\}$ a basis of P_{1} ? [Remember that P_{1} is the vector space of polynomials of degree at most 1.] How about $S_{2}=\{1, x, 1+x\}$?

Solution. S_{2} is not a basis, as $\operatorname{dim} P_{1}=2$ and S_{2} has three vectors. Since S_{1} has the correct number of vectors [equal to the dimension] it suffices to check if S_{1} is linearly independent. But, $k_{1}(1+x)+k_{2}(-1+x)=0$ gives the following linear system:

$$
\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Since the coefficient matrix has determinant $2 \neq 0$, the system has only the trivial solution. Therefore, S_{1} is linearly independent and thus a basis.
4) Change of basis:
(a) [10 points] Let $B=\{(2,1),(1,1)\}$ and $B^{\prime}=\{(1,1),(0,1)\}$. Give the transition matrix $P_{B \rightarrow B^{\prime}}$.

Solution.

$$
\left[\begin{array}{rr|rr}
1 & 0 & 2 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{ll|rr}
1 & 0 & 2 & 1 \\
0 & 1 & -1 & 0
\end{array}\right] .
$$

So,

$$
P_{B \rightarrow B^{\prime}}=\left[\begin{array}{rr}
2 & 1 \\
-1 & 0
\end{array}\right] .
$$

(b) [5 points] Let B and B^{\prime} be bases of a vector space V, with transition matrix

$$
P_{B \rightarrow B^{\prime}}=\left[\begin{array}{rr}
1 & 1 \\
2 & -1
\end{array}\right] .
$$

Then, if $[\mathbf{v}]_{B}=(-1,2)$, find $[\mathbf{v}]_{B^{\prime}}$.
Solution.

$$
[\mathbf{v}]_{B^{\prime}}=P_{B \rightarrow B^{\prime}} \cdot[\mathbf{v}]_{B}=\left[\begin{array}{rr}
1 & 1 \\
2 & -1
\end{array}\right] \cdot\left[\begin{array}{r}
-1 \\
2
\end{array}\right]=\left[\begin{array}{r}
1 \\
-4
\end{array}\right]
$$

5) Let $\mathbf{v}_{1}=(1,0,3,-1,0), \mathbf{v}_{2}=(0,1,2,1,0)$, and $\mathbf{v}_{3}=(2,-1,4,-3,1)$. Find a basis for the orthogonal complement of $\operatorname{span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}\right)$.

Solution. The orthogonal complement is the nullspace of the matrix with the $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} as rows. Thus, we have:

$$
\left[\begin{array}{l}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\mathbf{v}_{3}
\end{array}\right]=\left[\begin{array}{rrrrr}
1 & 0 & 3 & -1 & 0 \\
0 & 1 & 2 & 1 & 0 \\
2 & -1 & 4 & -3 & 1
\end{array}\right] \sim\left[\begin{array}{rrrrr}
1 & 0 & 3 & -1 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & -1 & -2 & -1 & 1
\end{array}\right] \sim\left[\begin{array}{rrrrr}
1 & 0 & 3 & -1 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Solving we get $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(-3 s+t,-2 s-t, s, t, 0)=s(-3,-2,1,0,0)+t(1,-1,0,1,0)$. So, a basis is: $\{(-3,-2,1,0,0),(1,-1,0,1,0)\}$.
6) Let

$$
\begin{aligned}
& \mathbf{v}_{1}=(-3,-3,-7,-34,-11,3,-33), \\
& \mathbf{v}_{2}=(2,2,4,20,6,-2,20), \\
& \mathbf{v}_{3}=(1,1,2,10,3,-1,10), \\
& \mathbf{v}_{4}=(2,2,5,24,8,-1,21), \\
& \mathbf{v}_{5}=(-1,-1,-4,-18,-7,-1,-12),
\end{aligned}
$$

and $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}\right\}$, and $V=\operatorname{span}(S)$. Given that

$$
\left[\begin{array}{l}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\mathbf{v}_{3} \\
\mathbf{v}_{4} \\
\mathbf{v}_{5}
\end{array}\right] \sim\left[\begin{array}{rrrrrrr}
1 & 1 & 0 & 2 & -1 & 0 & 2 \\
0 & 0 & 1 & 4 & 2 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and

$$
\left[\begin{array}{lllll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} & \mathbf{v}_{4} & \mathbf{v}_{5}
\end{array}\right] \sim\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 / 2 & 0 & 3 / 2 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

answer the questions below. [You do not need to justify any of the items below.]
(a) [4 points] What are the dimension of V and V^{\perp} [the orthogonal complement of V in $\left.\mathbb{R}^{7}\right]$?

Solution. They are 3 [rank of the first matrix] and 4 [nullity of the first matrix] respectively.
(b) [4 points] Find a basis for V made of elements of S.

Solution. We can take $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$.
(c) [3 points] Find the coordinates of \mathbf{v}_{2} and \mathbf{v}_{5} with respect to the basis you've found in item (b).

Solution. We have $\left[\mathbf{v}_{2}\right]_{B}=(0,1,0)$ and $\left[\mathbf{v}_{5}\right]_{B}=(0,3 / 2,-2)$.
(d) [3 points] Which vectors from the standard basis of \mathbb{R}^{7} can you add to the vectors in the basis of V you've in (b) to obtain a basis of all of \mathbb{R}^{7} ?

Solution. $\mathbf{e}_{2}, \mathbf{e}_{4}, \mathbf{e}_{5}, \mathbf{e}_{7}$.
7) [15 points] Let V be the set of all polynomial of the form $a_{0}+a_{1} x+\left(a_{0}+a_{1}\right) x^{2}$, where $a_{0}, a_{1} \in \mathbb{R}$. [In other words, polynomials of degree at most two, whose coefficient of x^{2} is the sum of the coefficient of x and free coefficient.] Show that V is a vector space.

Solution. Since V is a subset of a vector space [namely, P_{2}], we only need to check that $0 \in V$ and axiom 0 from the list at the end. Clearly, $0 \in V$, by taking $a_{0}=a_{1}=0$.

Also, if $a_{0}+a_{1} x+\left(a_{0}+a_{1}\right) x^{2}, b_{0}+b_{1} x+\left(b_{0}+b_{1}\right) x^{2} \in V$, then:
$\left(a_{0}+a_{1} x+\left(a_{0}+a_{1}\right) x^{2}\right)+\left(b_{0}+b_{1} x+\left(b_{0}+b_{1}\right) x^{2}\right)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right)\right) x^{2}$,
and hence the sum is in V.
Finally, if $a_{0}+a_{1} x+\left(a_{0}+a_{1}\right) x^{2} \in V$ and $k \in \mathbb{R}$, then:

$$
k\left(a_{0}+a_{1} x+\left(a_{0}+a_{1}\right) x^{2}\right)=\left(k a_{0}\right)+\left(k a_{1}\right) x+\left(k a_{0}+k a_{1}\right) x^{2},
$$

and hence the scalar product is in V.

Vector Space Axioms

A non-empty set V with a sum and a scalar product is a vector space if it satisfies the following conditions:
0. $\mathbf{u}+\mathbf{v} \in V$ for all $\mathbf{u}, \mathbf{v} \in V$, and $k \mathbf{u} \in V$ for all $\mathbf{u} \in V$ and $k \in \mathbb{R}$;

1. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ for all $\mathbf{u}, \mathbf{v} \in V$;
2. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$;
3. there is $\mathbf{0} \in V$ such that $\mathbf{0}+\mathbf{u}=\mathbf{u}$ for all $\mathbf{u} \in V$;
4. given $\mathbf{u} \in V$, there exists $-\mathbf{u} \in V$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$;
5. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$ for all $\mathbf{u}, \mathbf{v} \in V$ and $k \in \mathbb{R}$;
6. $(k+l) \mathbf{u}=k \mathbf{u}+l \mathbf{u}$ for all $\mathbf{u} \in V$ and $k, l \in \mathbb{R}$;
7. $k(l \mathbf{u})=(k l) \mathbf{u}$ for all $\mathbf{u} \in V$ and $k, l \in \mathbb{R}$;
8. $\mathbf{1} \mathbf{u}=\mathbf{u}$ for all $\mathbf{u} \in V$.
