1) Solve the systems $A \mathbf{x}=\mathbf{b}$, given that:
(a) $[A \mid \mathbf{b}] \sim\left[\begin{array}{rrr|r}1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & -1\end{array}\right]$

Solution. No solution, since the last row gives $0=-1$.
(b) $[A \mid \mathbf{b}] \sim\left[\begin{array}{rrrr|r}1 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

Solution. $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2,-1,3,0)$.
(c) $[A \mid \mathbf{b}] \sim\left[\begin{array}{rrrrr|r}1 & 0 & 2 & 0 & -1 & 4 \\ 0 & 1 & -1 & 0 & 2 & 2 \\ 0 & 0 & 0 & 1 & 1 & -1\end{array}\right]$.

Solution. $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(4-2 s+t, 2+s-2 t, s,-1-t, t)$.
2) If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 1 & 2\end{array}\right]$, find $(A B)_{2,2}$ and $(A B)_{1,3}$. $\left[\right.$ Remember: $(A)_{i, j}$ is the entry of A in the i-th row and j-th column.]

Solution. We have

$$
(A B)_{2,2}=4 \cdot 2+5 \cdot 1+6 \cdot 1=19
$$

and

$$
(A B)_{1,3}=1 \cdot 3+2 \cdot 3+3 \cdot 2=15 .
$$

3) If A is an 3×3 matrix with $\operatorname{det}(A)=2$, then what is $\operatorname{det}\left(\left(2 A^{\mathrm{T}}\right)^{-1}\right)$? [Show steps!] Solution. We have:

$$
\begin{aligned}
\operatorname{det}\left(\left(2 A^{\mathrm{T}}\right)^{-1}\right) & =\operatorname{det}\left(\left(2 A^{\mathrm{T}}\right)\right)^{-1} \\
& =\left[2^{3} \cdot \operatorname{det}\left(A^{\mathrm{T}}\right)\right]^{-1} \\
& =\left[2^{3} \cdot \operatorname{det}(A)\right]^{-1} \\
& =\left[2^{3} \cdot 2\right]^{-1} \\
& =1 / 16 .
\end{aligned}
$$

4) Let $D=\left[\begin{array}{rrr}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$.
(a) Find D^{-1}.

Solution. $D^{-1}=\left[\begin{array}{rrr}1 / 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 / 3\end{array}\right]$.
(b) If B and C are square matrices of the same size, then complete the formula:

$$
(B \cdot C)^{-1}=C^{-1} \cdot B^{-1} .
$$

(c) If $A^{-1}=\left[\begin{array}{rrr}2 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 3 & 0\end{array}\right]$, then, with the D above, find $(D A)^{-1}$.

Solution. From the above:

$$
(D A)^{-1}=A^{-1} D^{-1}=\left[\begin{array}{rrr}
2 & 1 & -1 \\
1 & 1 & 1 \\
0 & 3 & 0
\end{array}\right] \cdot\left[\begin{array}{rrr}
1 / 2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1 / 3
\end{array}\right]=\left[\begin{array}{rrr}
1 & -1 & -1 / 3 \\
1 / 2 & -1 & 1 / 3 \\
0 & -3 & 0
\end{array}\right] .
$$

Note that the last multiplication can be done quickly using the properties of multiplication by diagonal matrices.
5) Let $A=\left[\begin{array}{cccc}1 & 2 & 3 & 1 \\ 0 & 5 & -1 & 1 \\ 1 & 2 & 0 & 1 \\ 2 & -1 & 1 & 0\end{array}\right]$. Given that $\operatorname{det}(A)=15$, what is $\left(A^{-1}\right)_{3,2}$? [Hint:

You do not need to compute the whole inverse to find this!]
Solution. We use the formula $A^{-1}=\frac{1}{\operatorname{det}(A)} \cdot \operatorname{adj}(A)$. So, $\left(A^{-1}\right)_{3,2}=\frac{1}{\operatorname{det}(A)} \cdot(\operatorname{adj}(A))_{3,2}$. Now,

$$
(\operatorname{adj}(A))_{3,2}=C_{2,3}=(-1)^{2+3} \cdot\left|\begin{array}{ccc}
1 & 2 & 1 \\
1 & 2 & 1 \\
2 & -1 & 0
\end{array}\right|
$$

But, since we have two rows which are equal, we have that the determinant above is zero. Therefore, $\left(A^{-1}\right)_{3,2}=\frac{1}{15} \cdot 0=0$.
6) Let $A=\left[\begin{array}{rrrr}2 & 0 & 4 & 2 \\ 3 & 1 & 5 & 6 \\ 0 & 2 & -1 & 8 \\ 2 & 0 & 4 & 3\end{array}\right]$. Find the reduced row echelon form of $A, \operatorname{det}(A)$, and, if possible, A^{-1}. [Hint: You can compute all these together!]

Solution. We have:

$$
\begin{aligned}
{\left[\begin{array}{rrrr|rrrr}
2 & 0 & 4 & 2 & 1 & 0 & 0 & 0 \\
3 & 1 & 5 & 6 & 0 & 1 & 0 & 0 \\
0 & 2 & -1 & 8 & 0 & 0 & 1 & 0 \\
2 & 0 & 4 & 3 & 0 & 0 & 0 & 1
\end{array}\right] } & \sim\left[\begin{array}{rrrr|rrrr}
1 & 0 & 2 & 1 & 1 / 2 & 0 & 0 & 0 \\
3 & 1 & 5 & 6 & 0 & 1 & 0 & 0 \\
0 & 2 & -1 & 8 & 0 & 0 & 1 & 0 \\
2 & 0 & 4 & 3 & 0 & 0 & 0 & 1
\end{array}\right] \\
\sim\left[\begin{array}{rrrrr|rrrr}
1 & 0 & 2 & 1 & 1 / 2 & 0 & 0 & 0 \\
0 & 1 & -1 & 3 & -3 / 2 & 1 & 0 & 0 \\
0 & 2 & -1 & 8 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 1
\end{array}\right] & \sim\left[\begin{array}{rrrrrrr}
1 & 0 & 2 & 1 & 1 / 2 & 0 & 0 \\
0 & 1 & -1 & 3 & -3 / 2 & 1 & 0 \\
0 & 0 \\
0 & 0 & 1 & 2 & 3 & -2 & 1 \\
0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 \\
1
\end{array}\right] \\
& \sim\left[\begin{array}{rrrr|rrrr}
1 & 0 & 0 & 0 & -17 / 2 & 4 & -2 & 3 \\
0 & 1 & 0 & 0 & 13 / 2 & -1 & 1 & 5 \\
0 & 0 & 1 & 0 & 5 & -2 & 1 & -2 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Hence, the reduces row echelon form of A is $I_{3}, \operatorname{det}(A)=2$ [only operation that changes the determinant was dividing a row by 2 , and so $\operatorname{det}(A)=2 \cdot \operatorname{det}\left(I_{n}\right)=2$], and

$$
A^{-1}=\left[\begin{array}{rrrr}
-17 / 2 & 4 & -2 & 3 \\
13 / 2 & -1 & 1 & -5 \\
5 & -2 & 1 & -2 \\
-1 & 0 & 0 & 1
\end{array}\right]
$$

