1) [10 points] Put the following matrix in reduced row echelon form:

$$
\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 2 \\
2 & 0 & 4 & 0 & 2 \\
3 & 1 & 7 & 0 & 5 \\
0 & 1 & 1 & 1 & 3
\end{array}\right]
$$

Solution.

$$
\begin{aligned}
{\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 2 \\
2 & 0 & 4 & 0 & 2 \\
3 & 1 & 7 & 0 & 5 \\
0 & 1 & 1 & 1 & 3
\end{array}\right] \sim } & {\left[\begin{array}{lllll}
1 & 0 & 2 & 0 & 1 \\
0 & 1 & 1 & 0 & 2 \\
3 & 1 & 7 & 0 & 5 \\
0 & 1 & 1 & 1 & 3
\end{array}\right] \sim } \\
& {\left[\begin{array}{lllll}
1 & 0 & 2 & 0 & 1 \\
0 & 1 & 1 & 0 & 2 \\
0 & 1 & 1 & 0 & 2 \\
0 & 1 & 1 & 1 & 3
\end{array}\right] \sim\left[\begin{array}{lllll}
1 & 0 & 2 & 0 & 1 \\
0 & 1 & 1 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{lllll}
1 & 0 & 2 & 0 & 1 \\
0 & 1 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] }
\end{aligned}
$$

2) $[10$ points $]$ Let

$$
A=\left[\begin{array}{cccc}
1 & 1 & 0 & 2 \\
0 & 0 & 2 & -2 \\
1 & -1 & 3 & 2 \\
1 & 2 & 1 & 2
\end{array}\right]
$$

Compute $\operatorname{det}(A)$.
Solution.

$$
\begin{aligned}
\left|\begin{array}{cccc}
1 & 1 & 0 & 2 \\
0 & 0 & 2 & -2 \\
1 & -1 & 3 & 2 \\
1 & 2 & 1 & 2
\end{array}\right|=-2\left|\begin{array}{ccc}
1 & 1 & 2 \\
1 & -1 & 2 \\
1 & 2 & 2
\end{array}\right| & -2\left|\begin{array}{ccc}
1 & 1 & 0 \\
1 & -1 & 3 \\
1 & 2 & 1
\end{array}\right| \\
& =-2 \cdot 0+-2((-1+3+0)-(0+6+1))=10
\end{aligned}
$$

3) [40 points] You should be able to answer the following questions quickly. Give short justifications [or show a little work] unless stated otherwise.
(a) [4 points] What is the dimension of $P_{5}$ [where $P_{5}$ is the vector space of polynomials of degree at most 5]? [No need to justify.]

Answer. 6 [as $\left\{1, x, x^{2}, x^{3}, x^{4} \cdot x^{5}\right\}$ is a basis].
(b) [4 points] Is $\left\{\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right],\left[\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right],\left[\begin{array}{cc}2 & 1 \\ -3 & 1\end{array}\right],\left[\begin{array}{cc}-2 & -5 \\ 6 & 2\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right\}$ linearly independent in $M_{2 \times 2}$ [i.e., in the vector space of $2 \times 2$ matrices]? Justify your answer in one short sentence.

Answer. No, as we have more vectors, namely 5, than the dimension of $M_{2 \times 2}$, namely 4.
(c) [4 points] If $A=\left[\begin{array}{cc}1 & 1 \\ -2 & 1\end{array}\right]$, then find $A^{-1}$. [No need to show work.]

Answer. $\frac{1}{3}\left[\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right]$.
(d) [4 points] Give the matrix that represents the rotation by $\pi / 2$ about the $x$-axis, followed by a projection onto the $x y$-plane in $\mathbb{R}^{3}$. [No need to justify.]

Answer.

$$
\begin{aligned}
& \mathbf{e}_{1} \longrightarrow \mathbf{e}_{1} \longrightarrow \mathbf{e}_{1} \\
& \mathbf{e}_{2} \longrightarrow \mathbf{e}_{3} \longrightarrow \mathbf{0} \\
& \mathbf{e}_{3} \longrightarrow-\mathbf{e}_{2} \longrightarrow-\mathbf{e}_{2}
\end{aligned}
$$

and so,

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

(e) [4 points] If $A \mathbf{x}=\mathbf{b}$ has no solution, then what can we say about the reduced echelon form of $A$. [No need to justify.]

Answer. It has a row of zeros.
(f) [4 points] Let $S, T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be linear transformations given by

$$
\begin{aligned}
T\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =\left(x_{1}, x_{3}, x_{2}, x_{4}\right) \\
S\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =\left(x_{1}+x_{2}, 2 x_{1}-x_{3}, 0, x_{1}+x_{2}+x_{4}\right) .
\end{aligned}
$$

Give $[T \circ S]$.
Answer. We have

$$
[T]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad[S]=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
2 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1
\end{array}\right]
$$

and so,

$$
[T \circ S]=[T] \cdot[S]=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
2 & 0 & -1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right]
$$

(g) [4 points] Let $\mathbf{v}=(1,0,0,1)$ and $\mathbf{w}=(2,-1,3,1)$. Find the component of $\mathbf{w}$ orthogonal to $\mathbf{v}$.

Answer. We have $\operatorname{proj}_{\mathbf{v}} \mathbf{w}=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|^{2}} \mathbf{v}=\frac{3}{2}(1,0,0,1)$, and the orthogonal component is then $(2,-1,3,1)-(3 / 2,0,0,3 / 2)=(1 / 2,-1,3,-1 / 2)$.
(h) [4 points] If $A$ is an invertible matrix, with $A^{-1}=\left[\begin{array}{cc}1 & 2 \\ -1 & -1\end{array}\right][$ note that this is the inverse of $A$, not $A!$ ], find the solutions [if any] of $A \mathbf{x}=\mathbf{b}$ for $\mathbf{b}=(1,0)$ and $\mathbf{b}=(2,1)$. [So, there are two systems to solve!]

Answer. Since $A$ is invertible, the solution is $A^{-1} \mathbf{b}$. So, the solutions are $(1,-1)$ and $(4,-3)$.
(i) [4 points] Let $S=\{(1,0,1),(-2,1,1),(0,0,3)\}$, and $V=\operatorname{span}(S)$. Describe how you would find if $\mathbf{v}=(1,-3,1)$ is in $V$. More precisely, set up a system [in matrix form!] and say how solving the system would tell you if $\mathbf{v} \in V$ or not. [The answer is short!]

Answer. We have that $\mathbf{v} \in V$ if, and only if, the system

$$
\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & 0 \\
1 & 1 & 3
\end{array}\right] \mathbf{x}=\left[\begin{array}{c}
1 \\
-3 \\
1
\end{array}\right]
$$

has a solution.
(j) [4 points] If $A$ is a 5 by 4 matrix of nullity 3 , give the $\operatorname{rank}$ of $A$ and the nullity of $A^{\mathrm{T}}$. [No need to justify.]

Answer. Since the nullity plus the rank is the number of columns, we have that the rank of $A$ is $4-3=1$. Since the rank of $A$ is the same as the rank of its transpose, we have that the nullity of $A^{\mathrm{T}}$ is $5-1=4$.
4) [15 points] Let

$$
A=\left[\begin{array}{rrr}
3 & 1 & 3 \\
0 & -1 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

(a) [4 points] Show that the eigenvalues of $A$ are -1 and 3 .

Solution. The characteristic equation is given by

$$
\operatorname{det}\left(\lambda I_{3}-A\right)=\left|\begin{array}{ccc}
(\lambda-3) & -1 & -3 \\
0 & (\lambda+1) & 0 \\
0 & 0 & (\lambda-3)
\end{array}\right|=(\lambda-3)(\lambda+1)(\lambda-3)=0
$$

Thus, the eigenvalues are the solutions $\lambda=3,-1$.
(b) [4 points] Find the eigenspace associated to the eigenvalue 3. [Since I gave you the eigenvalue, you can do this part even if you could not do part (a).]

Solution. For the eigenvalue $\lambda=3$, we need to find the null space of

$$
3 I_{3}-A=\left[\begin{array}{rrr}
0 & -1 & -3 \\
0 & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

which has reduced echelon form

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

So, the eigenspace is $\operatorname{span}(\{(1,0,0)\})$.
5) [10 points] Is the set $V$ of all 2 by 2 diagonal matrices [with the usual sum and scalar multiplication of matrices] a subspace of $M_{2 \times 2}$ [i.e., of the vector space of all 2 by 2 matrices]? [Justify!]

Solution. Yes! Since it is a subspace, we only need to check that it is closed under addition and scalar multiplication.

Let $\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right],\left[\begin{array}{cc}c & 0 \\ 0 & d\end{array}\right] \in V$ and $k \in \mathbb{R}$. Then,

$$
\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]+\left[\begin{array}{ll}
c & 0 \\
0 & d
\end{array}\right]=\left[\begin{array}{cc}
a+c & 0 \\
0 & b+d
\end{array}\right]
$$

and

$$
k\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]=\left[\begin{array}{cc}
k a & 0 \\
0 & k b
\end{array}\right] .
$$

Since both are in $V$ [i.e., both are diagonal], we have that $V$ is a subspace.
6) $[20$ points $]$ Let

$$
\begin{aligned}
& \mathbf{v}_{1}=(-3,-3,-7,-34,-11,3,-33), \\
& \mathbf{v}_{2}=(2,2,4,20,6,-2,20), \\
& \mathbf{v}_{3}=(1,1,2,10,3,-1,10), \\
& \mathbf{v}_{4}=(2,2,5,24,8,-1,21), \\
& \mathbf{v}_{5}=(-1,-1,-4,-18,-7,-1,-12),
\end{aligned}
$$

and $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}\right\}$, and $V=\operatorname{span}(S)$. Given that

$$
\left[\begin{array}{l}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\mathbf{v}_{3} \\
\mathbf{v}_{4} \\
\mathbf{v}_{5}
\end{array}\right] \sim\left[\begin{array}{rrrrrrr}
1 & 1 & 0 & 2 & -1 & 0 & 2 \\
0 & 0 & 1 & 4 & 2 & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and

$$
\left[\begin{array}{lllll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} & \mathbf{v}_{4} & \mathbf{v}_{5}
\end{array}\right] \sim\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 / 2 & 0 & 3 / 2 \\
0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

answer the questions below. [You do not need to justify any of the items below.]
(a) [4 points] What are the dimension of $V$ and $V^{\perp}$ [the orthogonal complement of $V$ in $\left.\mathbb{R}^{7}\right]$ ?

Solution. They are 3 and 4 respectively.
(b) [4 points] Find a basis for $V$.

Solution. We can take the first three rows of the first matrix in echelon form, say $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$ or $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$.
(c) [4 points] Describe $V^{\perp}$ as a matrix space [row space, column space, null space] of some matrix. [In other words, fill in the blanks of " $V^{\perp}$ is the $\qquad$ space of the matrix $\qquad$ ."]

Solution. $V^{\perp}$ is the null space of the first matrix in echelon form [or of the matrix with the $\mathbf{v}_{i}$ 's as rows].
(d) [4 points] Find the coordinates of each of the vectors in $S$ with respect to the basis you've found in item (b).

Solution. If we use the basis $B=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}$, then

$$
\begin{array}{ll}
\left(\mathbf{v}_{1}\right)_{B}=(-3,-7,3) & \left(\mathbf{v}_{2}\right)_{B}=(2,4,-2) \\
\left(\mathbf{v}_{3}\right)_{B}=(1,2,-1) & \left(\mathbf{v}_{4}\right)_{B}=(2,5,-1) \\
\left(\mathbf{v}_{5}\right)_{B}=(-1,-4,-1) . &
\end{array}
$$

If we use $B^{\prime}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$, then

$$
\begin{array}{ll}
\left(\mathbf{v}_{1}\right)_{B^{\prime}}=(1,0,0) & \left(\mathbf{v}_{2}\right)_{B^{\prime}}=(0,1,0) \\
\left(\mathbf{v}_{3}\right)_{B^{\prime}}=(0,1 / 2,0) & \left(\mathbf{v}_{4}\right)_{B^{\prime}}=(0,0,1) \\
\left(\mathbf{v}_{5}\right)_{B^{\prime}}=(0,3 / 2,-2) . &
\end{array}
$$

(e) [4 points] Which vectors from the standard basis of $\mathbb{R}^{7}$ you can add to the vectors in the basis of $V$ you've in (b) to obtain a basis of all of $\mathbb{R}^{7}$ ?

Solution. $\mathbf{e}_{2}, \mathbf{e}_{4}, \mathbf{e}_{5}, \mathbf{e}_{7}$.

