1) [20 points] Quickies! You don't need to justify your answers.
(a) If A is a 2 by 2 matrix with $\operatorname{det}(A)=3$, then what is $\operatorname{det}\left(2\left(A^{\mathrm{T}}\right)^{3}\right)$?

Solution. $\operatorname{det}\left(2\left(A^{\mathrm{T}}\right)^{3}\right)=2^{2} \operatorname{det}\left(\left(A^{\mathrm{T}}\right)^{3}\right)=2^{2} \operatorname{det}\left(A^{\mathrm{T}}\right)^{3}=2^{2} \operatorname{det}(A)^{3}=2^{2} \cdot 3^{3}=108$.
(b) If $\mathbf{v}=(-2,1,2)$ and $\mathbf{w}=(0,-3,4)$, then what is the cosine of the angle between \mathbf{v} and \mathbf{w} ?

Solution. $\cos (\theta)=\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \cdot\|\mathbf{w}\|}=\frac{5}{3 \cdot 5}=\frac{1}{3}$.
(c) If $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is one-to-one, then what can we say about the sizes of m and n ? [In other words, $m<n$, or $m \geq n$, or $m=n$, no restriction, etc.]

Solution. We must have $m \leq n$.
(d) If $A=\left[\begin{array}{rrrr}1 & -2 & 5 & 3 \\ 0 & 2 & 1 & -4 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2\end{array}\right]$, then what is the determinant of the matrix obtained by switching two rows of A^{-1} ? [If A is not invertible, justify.]

Solution. Since $\operatorname{det}(A)=12$, we have that $\operatorname{det}\left(A^{-1}\right)=1 / 12$ and thus the determinant of the matrix in question is $-1 / 12$.
(e) Give the two matrices that give the projection onto the $x y$-plane and the reflection about the $y z$-plane, respectively.

Solution. They are $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ respectively.
2) [20 points] Let $T_{1}, T_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be two linear transformations such that T_{1} is one-to-one and T_{2} is onto.
(a) What can we say about the matrices $\left[T_{1}\right]$ and $\left[T_{2}\right]$?

Solution. Since T_{1} is one-to-one we have that $\operatorname{det}\left(\left[T_{1}\right]\right) \neq 0$ and since T_{2} is onto we also have that $\operatorname{det}\left(\left[T_{1}\right]\right) \neq 0$. [They are also invertible, or have reduced echelon form equal to the identity matrix.]
(b) Show that the composition $T_{2} \circ T_{1}$ is both one-to-one and onto.

Solution. We have $\operatorname{det}\left(\left[T_{2} \circ T_{1}\right]\right)=\operatorname{det}\left(\left[T_{2}\right] \cdot\left[T_{1}\right]\right)=\operatorname{det}\left(\left[T_{2}\right]\right) \cdot \operatorname{det}\left(\left[T_{1}\right]\right) \neq 0$ [as product of non-zero numbers is non-zero]. So, $T_{2} \circ T_{1}$ is both one-to-one and onto.
3) $[20$ points]
(a) Let \mathbf{e}_{1} and \mathbf{e}_{2} be the usual vectors in \mathbb{R}^{2} and $\mathbf{w}=(\cos (\theta), \sin (\theta))$. Find the projections of \mathbf{e}_{1} and \mathbf{e}_{2} on the direction of \mathbf{w}. [Hint: I shouldn't have to say this, but remember that $\cos ^{2}(\theta)+\sin ^{2}(\theta)=1$.]

Solution. We have

$$
\operatorname{proj}_{\mathbf{w}}\left(\mathbf{e}_{1}\right)=\frac{\cos (\theta)}{\left(\cos ^{2}(\theta)+\sin ^{2}(\theta)\right)^{2}}(\cos (\theta), \sin (\theta))=\left(\cos ^{2}(\theta), \sin (\theta) \cos (\theta)\right)
$$

and

$$
\operatorname{proj}_{\mathbf{w}}\left(\mathbf{e}_{2}\right)=\frac{\sin (\theta)}{\left(\cos ^{2}(\theta)+\sin ^{2}(\theta)\right)^{2}}(\cos (\theta), \sin (\theta))=\left(\sin (\theta) \cos (\theta), \sin ^{2}(\theta)\right) .
$$

(b) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the orthogonal projection [not reflection!] onto the line on the plane that makes an angle of θ with the x-axis. Find the standard matrix $[T]$ of T. [Hint: Item (a) is useful here, as the line in question has the same direction as the vector w.]

Solution. Since projection onto the given line is the same as projecting on the direction of $\mathbf{w}\left[\right.$ i.e., $T(\mathbf{x})=\operatorname{proj}_{\mathbf{w}}(\mathbf{x})$], we have

$$
[T]=\left[\begin{array}{cc}
\cos ^{2}(\theta) & \sin (\theta) \cos (\theta) \\
\sin (\theta) \cos (\theta) & \sin ^{2}(\theta)
\end{array}\right] .
$$

Alternatively, one could find this matrix by composing rotation by $-\theta$, with projection onto the x-axis, with rotation by θ :

$$
\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right]=\left[\begin{array}{cc}
\cos ^{2}(\theta) & \sin (\theta) \cos (\theta) \\
\sin (\theta) \cos (\theta) & \sin ^{2}(\theta)
\end{array}\right] .
$$

4) [20 points] Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Show that the set of all vectors $\mathbf{v} \in \mathbb{R}^{n}$ such that $T(\mathbf{v})=\mathbf{0}$ is a vector space.

Solution. We've seen in class that solutions of a homogeneous linear system is a vector space. Now, $T(\mathbf{v})=\mathbf{0}$ if, and only if, \mathbf{v} is a solution of the homogeneous linear system $[T] \mathbf{x}=\mathbf{0}$. So, the statement is true.

Alternatively, you can do it easily also if you didn't remember the above. Since we are using vectors in \mathbb{R}^{n} [which is a vector space] with the usual addition and scalar multiplication, we have that we just need to check property 0 from the list. But, if \mathbf{v} and \mathbf{w} are such that $T(\mathbf{v})=\mathbf{0}$ and $T(\mathbf{w})=\mathbf{0}$, then [since T is linear] $T(\mathbf{v}+\mathbf{w})=T(\mathbf{v})+T(\mathbf{w})=\mathbf{0}+\mathbf{0}=\mathbf{0}$. Also, if $k \in \mathbb{R}$, then [since T is linear] $T(k \mathbf{v})=k T(\mathbf{v})=k \mathbf{0}=\mathbf{0}$. So, property 0 holds and the set is a vector space.
5) [20 points] Let $V=\mathbb{R}^{2}$ with the following operations:

$$
\begin{aligned}
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right) & =\left(x_{1}+x_{2}, y_{1}+y_{2}\right) & & \text { [usual addition }] \\
k \cdot\left(x_{1}, y_{1}\right) & =\left(k x_{1}, k^{2} y_{1}\right) & & {[\text { unusual scalar mult. }] }
\end{aligned}
$$

Then, V is not a vector space. [You can take my word for it.] List all items from the list of Vector Space Axioms [given at the end of the test] that fail, and for each item show how it fails by giving a numerical example.

Solution. Only item 6 fails: let $\mathbf{u}=(0,1), k=l=2$. Then, $(k+l) \cdot \mathbf{u}=4 \cdot(0,1)=(0,16)$, while $(k \mathbf{u})+(l \mathbf{u})=(2 \cdot(0,1))+(2 \cdot(0,1))=(0,4)+(0,4)=(0,8)$, and hence different.

Vector Space Axioms

A non-empty set V with a sum and a scalar product is a vector space if it satisfies the following conditions:
0. $\mathbf{u}+\mathbf{v} \in V$ for all $\mathbf{u}, \mathbf{v} \in V$, and $k \mathbf{u} \in V$ for all $\mathbf{u} \in V$ and $k \in \mathbb{R}$;

1. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ for all $\mathbf{u}, \mathbf{v} \in V$;
2. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$ for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$;
3. there is $\mathbf{0} \in V$ such that $\mathbf{0}+\mathbf{u}=\mathbf{u}$ for all $\mathbf{u} \in V$;
4. given $\mathbf{u} \in V$, there exists $-\mathbf{u} \in V$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$;
5. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$ for all $\mathbf{u}, \mathbf{v} \in V$ and $k \in \mathbb{R}$;
6. $(k+l) \mathbf{u}=k \mathbf{u}+l \mathbf{u}$ for all $\mathbf{u} \in V$ and $k, l \in \mathbb{R}$;
7. $k(l \mathbf{u})=(k l) \mathbf{u}$ for all $\mathbf{u} \in V$ and $k, l \in \mathbb{R}$;
8. $\mathbf{1} \mathbf{u}=\mathbf{u}$ for all $\mathbf{u} \in V$.
