
1) [20 points] Quickies! You don’t need to justify your answers.

(a) If A is a 2 by 2 matrix with det(A) = 3, then what is det(2(AT)3)?

Solution. det(2(AT)3) = 22 det((AT)3) = 22 det(AT)3 = 22 det(A)3 = 22 · 33 = 108.

(b) If v = (−2, 1, 2) and w = (0,−3, 4), then what is the cosine of the angle between v
and w?

Solution. cos(θ) =
v ·w
‖v‖ · ‖w‖

=
5

3 · 5
=

1

3
.

(c) If T : Rm → Rn is one-to-one, then what can we say about the sizes of m and n? [In
other words, m < n, or m ≥ n, or m = n, no restriction, etc.]

Solution. We must have m ≤ n.

(d) If A =


1 −2 5 3
0 2 1 −4
0 0 3 0
0 0 0 2

, then what is the determinant of the matrix obtained by

switching two rows of A−1? [If A is not invertible, justify.]

Solution. Since det(A) = 12, we have that det(A−1) = 1/12 and thus the determinant
of the matrix in question is −1/12.

(e) Give the two matrices that give the projection onto the xy-plane and the reflection
about the yz-plane, respectively.

Solution. They are

 1 0 0
0 1 0
0 0 0

 and

 −1 0 0
0 1 0
0 0 1

 respectively.
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2) [20 points] Let T1, T2 : Rn → Rn be two linear transformations such that T1 is one-to-one
and T2 is onto.

(a) What can we say about the matrices [T1] and [T2]?

Solution. Since T1 is one-to-one we have that det([T1]) 6= 0 and since T2 is onto we also
have that det([T1]) 6= 0. [They are also invertible, or have reduced echelon form equal
to the identity matrix.]

(b) Show that the composition T2 ◦ T1 is both one-to-one and onto.

Solution. We have det([T2 ◦T1]) = det([T2] · [T1]) = det([T2]) ·det([T1]) 6= 0 [as product
of non-zero numbers is non-zero]. So, T2 ◦ T1 is both one-to-one and onto.
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3) [20 points]

(a) Let e1 and e2 be the usual vectors in R2 and w = (cos(θ), sin(θ)). Find the projections
of e1 and e2 on the direction of w. [Hint: I shouldn’t have to say this, but remember
that cos2(θ) + sin2(θ) = 1.]

Solution. We have

projw(e1) =
cos(θ)

(cos2(θ) + sin2(θ))2
(cos(θ), sin(θ)) = (cos2(θ), sin(θ) cos(θ))

and

projw(e2) =
sin(θ)

(cos2(θ) + sin2(θ))2
(cos(θ), sin(θ)) = (sin(θ) cos(θ), sin2(θ)).

(b) Let T : R2 → R2 be the orthogonal projection [not reflection!] onto the line on the
plane that makes an angle of θ with the x-axis. Find the standard matrix [T ] of T .
[Hint: Item (a) is useful here, as the line in question has the same direction as the
vector w.]

Solution. Since projection onto the given line is the same as projecting on the direction
of w [i.e., T (x) = projw(x)], we have

[T ] =

[
cos2(θ) sin(θ) cos(θ)

sin(θ) cos(θ) sin2(θ)

]
.

Alternatively, one could find this matrix by composing rotation by −θ, with projection
onto the x-axis, with rotation by θ:[

cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
1 0
0 0

] [
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
=

[
cos2(θ) sin(θ) cos(θ)

sin(θ) cos(θ) sin2(θ)

]
.
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4) [20 points] Let T : Rn → Rm be a linear transformation. Show that the set of all vectors
v ∈ Rn such that T (v) = 0 is a vector space.

Solution. We’ve seen in class that solutions of a homogeneous linear system is a vector space.
Now, T (v) = 0 if, and only if, v is a solution of the homogeneous linear system [T ]x = 0.
So, the statement is true.

Alternatively, you can do it easily also if you didn’t remember the above. Since we are
using vectors in Rn [which is a vector space] with the usual addition and scalar multiplication,
we have that we just need to check property 0 from the list. But, if v and w are such that
T (v) = 0 and T (w) = 0, then [since T is linear] T (v + w) = T (v) + T (w) = 0 + 0 = 0.
Also, if k ∈ R, then [since T is linear] T (k v) = k T (v) = k 0 = 0. So, property 0 holds and
the set is a vector space.
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5) [20 points] Let V = R2 with the following operations:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) [usual addition]

k · (x1, y1) = (kx1, k
2y1) [unusual scalar mult.]

Then, V is not a vector space. [You can take my word for it.] List all items from the list of
Vector Space Axioms [given at the end of the test] that fail, and for each item show how it
fails by giving a numerical example.

Solution. Only item 6 fails: let u = (0, 1), k = l = 2. Then, (k + l) · u = 4 · (0, 1) = (0, 16),
while (k u) + (l u) = (2 · (0, 1)) + (2 · (0, 1)) = (0, 4) + (0, 4) = (0, 8), and hence different.
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Vector Space Axioms

A non-empty set V with a sum and a scalar product is a vector space if it satisfies the
following conditions:

0. u + v ∈ V for all u,v ∈ V , and ku ∈ V for all u ∈ V and k ∈ R;

1. u + v = v + u for all u,v ∈ V ;

2. (u + v) + w = u + (v + w) for all u,v,w ∈ V ;

3. there is 0 ∈ V such that 0 + u = u for all u ∈ V ;

4. given u ∈ V , there exists −u ∈ V such that u + (−u) = 0;

5. k(u + v) = ku + kv for all u,v ∈ V and k ∈ R;

6. (k + l)u = ku + lu for all u ∈ V and k, l ∈ R;

7. k(lu) = (kl)u for all u ∈ V and k, l ∈ R;

8. 1u = u for all u ∈ V .
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