1) Quickies! You don't need to justify your answers.
(a) If A is square matrix and $\operatorname{det} A=0$, what can you say about the number of solutions of $A \mathbf{x}=\mathbf{b}$?

Answer. It is either infinite or there are no solutions.
(b) If A is square matrix and for some vector \mathbf{b} the system $A \mathbf{x}=\mathbf{b}$ has no solution, then what can you say about the number of solutions of $A \mathbf{x}=\mathbf{0}$? [Here, $\mathbf{0}$ is the zero vector.]

Answer. It is infinite.
(c) If $A=\left[\begin{array}{rrrr}2 & \sqrt{3} & -\pi & 12 / 131 \\ 0 & -1 & \mathrm{e}^{2} & \ln (10) \\ 0 & 0 & 7 & \cos (3) \\ 0 & 0 & 0 & 1\end{array}\right]$, then what are the $(4,1)$ and $(3,3)$ entries of A^{-1} ?

Answer. They are 0 , as A^{-1} is upper triangular, and $1 / 7$ respectively.
(d) If $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions, then what can be said [for sure] about the reduced [row] echelon form of A ?

Answer. There is at least one column without a leading one.
(e) Write $\left[\begin{array}{rrr}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$ as a product of elementary matrices.

Answer. $\left[\begin{array}{rrr}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3\end{array}\right]$.
2) Solve the systems $A \mathbf{x}=\mathbf{b}$ below. (These should be quick and you do not have to show work.)
(a) $A=\left[\begin{array}{llll}2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{r}2 \\ -1 \\ 0 \\ 3 \\ 0\end{array}\right]$.

Answer. $x_{4}=3, x_{3}=0, x_{2}=-1-x_{4}=-4, x_{1}=1$.
(b) $A=\left[\begin{array}{rrrrr}2 & 3 & -1 & 4 & 5 \\ 0 & 0 & 2 & -1 & 3 \\ 1 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{r}0 \\ -1 \\ 1 \\ 3\end{array}\right]$.

Answer. No solution, as the bottom row gives $0=3$.
(c) $A=\left[\begin{array}{rrrrrrr}1 & 0 & 0 & 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{r}2 \\ 0 \\ 0 \\ -1 \\ 1\end{array}\right]$.

Answer. $x_{7}=1, x_{6}=t, x_{5}=-1-2 t, x_{4}=s, x_{3}=t, x_{2}=-s, x_{1}=2-2 s-t$, where $t, s \in \mathbb{R}$.
3) Find the inverse of $A=\left[\begin{array}{rrrr}1 & 0 & 2 & 1 \\ 3 & 1 & 5 & 6 \\ 0 & 2 & -1 & 8 \\ 2 & 0 & 4 & 3\end{array}\right]$.

Solution. We have:

$$
\begin{array}{cc}
{\left[\begin{array}{rrrr|rrrr}
1 & 0 & 2 & 1 & 1 & 0 & 0 & 0 \\
3 & 1 & 5 & 6 & 0 & 1 & 0 & 0 \\
0 & 2 & -1 & 8 & 0 & 0 & 1 & 0 \\
2 & 0 & 4 & 3 & 0 & 0 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{rrrr|rrrr}
1 & 0 & 2 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & -1 & 3 & -3 & 1 & 0 & 0 \\
0 & 2 & -1 & 8 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & -2 & 0 & 0 & 1
\end{array}\right]} \\
& \sim\left[\begin{array}{rrrr|rrrr}
1 & 0 & 2 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & -1 & 3 & -3 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 & 6 & -2 & 1 & 0 \\
0 & 0 & 0 & 1 & -2 & 0 & 0 & 1
\end{array}\right] \sim\left[\left.\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array} \right\rvert\, \begin{array}{rrrrr}
13 & -1 & -2 & 3 & 1 \\
\hline & -2 & 1 & -2 \\
0 & 0 & 1
\end{array}\right] .
\end{array}
$$

Hence,

$$
A^{-1}=\left[\begin{array}{rrrr}
-17 & 4 & -2 & 3 \\
13 & -1 & 1 & -5 \\
10 & -2 & 1 & -2 \\
-2 & 0 & 0 & 1
\end{array}\right]
$$

4) Let $A=\left[\begin{array}{rr}0 & -1 \\ 2 & 3\end{array}\right], B=\left[\begin{array}{rr}1 & 1 \\ 1 & -2\end{array}\right]$, and $C=\left[\begin{array}{rrr}1 & 3 & 2 \\ 1 & 1 & -1\end{array}\right]$. Compute $((A+2 B) \cdot C)^{\mathrm{T}}$.

Solution. We have

$$
2 B=\left[\begin{array}{rr}
2 & 2 \\
2 & -4
\end{array}\right], \quad A+2 B=\left[\begin{array}{rr}
2 & 1 \\
4 & -1
\end{array}\right], \quad(A+2 B) \cdot C=\left[\begin{array}{rrr}
3 & 7 & 3 \\
3 & 11 & 9
\end{array}\right]
$$

So,

$$
((A+2 B) \cdot C)^{\mathrm{T}}=\left[\begin{array}{rr}
3 & 3 \\
7 & 11 \\
3 & 9
\end{array}\right]
$$

5) Let $A=\left[\begin{array}{rrrrr}0 & 1 & 7 & 1 & 0 \\ 2 & 5 & -1 & 3 & 0 \\ -1 & 2 & 1 & 5 & 1 \\ 3 & 1 & 3 & -1 & 0 \\ -1 & 1 & -3 & 2 & 0\end{array}\right]$.
(a) What is the cofactor of A at position $(3,3)$?

Solution. It is:

$$
(-1)^{3+3}=\left|\begin{array}{rrrr}
0 & 1 & 1 & 0 \\
2 & 5 & 3 & 0 \\
3 & 1 & -1 & 0 \\
-1 & 1 & 2 & 0
\end{array}\right|=0
$$

[To compute the determinant, use the last column.]
(b) If $B=\left[b_{i, j}\right]$ is the adjoint of A, then what is $b_{3,2}$? [Be careful here!]

Solution. The entry of the adjoint at $(3,2)$ is the cofactor at $(2,3)$. So, it is

$$
(-1)^{2+3}\left|\begin{array}{rrrr}
0 & 1 & 1 & 0 \\
-1 & 2 & 5 & 1 \\
3 & 1 & -1 & 0 \\
-1 & 1 & 2 & 0
\end{array}\right|=-1\left((-1)^{2+4}\left|\begin{array}{rrr}
0 & 1 & 1 \\
3 & 1 & -1 \\
-1 & 1 & 2
\end{array}\right|\right)=-1(4-5)=1
$$

[The first determinant was computed by using the last column.]

