1) [10 points] Put the following matrix in *reduced* row echelon form:

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix}$$

Solution. This is the coefficient matrix of the system in Example 4 on pg. 12 of the text. [Just follow the steps disregarding the last column.] The reduced echelon form is:

•

2) [15 points] Let

$$A = \begin{bmatrix} 4 & 1 & 0 & 2 & 3\\ 0 & 0 & 0 & 1 & 0\\ 1 & -1 & 1 & -1 & -3\\ 2 & 1 & 2 & 3 & 0\\ 1 & 2 & 0 & 2 & 6 \end{bmatrix}.$$

Compute det(A).

Solution. We have:

$$det(A) = 1 \cdot \begin{vmatrix} 4 & 1 & 0 & 3 \\ 1 & -1 & 1 & -3 \\ 2 & 1 & 2 & 0 \\ 1 & 2 & 0 & 6 \end{vmatrix}$$
 [cofactors through the 2nd row]
$$= (-1) \cdot \begin{vmatrix} 4 & 1 & 3 \\ 2 & 1 & 0 \\ 1 & 2 & 6 \end{vmatrix} + 2 \cdot \begin{vmatrix} 4 & 1 & 3 \\ 1 & -1 & -3 \\ 1 & 2 & 6 \end{vmatrix}$$
 [cofactors through the 3rd col]
$$= (-1) \cdot (24 + 12 - (3 + 12)) + 2 \cdot 0$$
 [Sarrus rule and col. mult. of another]
$$= -21.$$

3) [40 points] You should be able to answer the following questions *quickly*. You do *not* need to justify your answers.

(a) [4 points] Give the matrix that represents the rotation by $\pi/2$ about the z-axis, followed by a reflection about the xz-plane in \mathbb{R}^3 .

Solution. We have:

$$\begin{array}{cccc} \mathbf{e}_1 & \longrightarrow & \mathbf{e}_2 & \longrightarrow & -\mathbf{e}_2, \\ \mathbf{e}_2 & \longrightarrow & -\mathbf{e}_1 & \longrightarrow & -\mathbf{e}_1, \\ \mathbf{e}_3 & \longrightarrow & \mathbf{e}_3 & \longrightarrow & \mathbf{e}_3. \end{array}$$
So, the matrix is $\begin{bmatrix} -\mathbf{e}_2 & -\mathbf{e}_1 & \mathbf{e}_3 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} .$

(b) [3 points] If $A\mathbf{x} = \mathbf{0}$ has infinitely many solutions, how many solutions can $A\mathbf{x} = \mathbf{b}$ possibly have?

Solution. It could have infinitely many or none at all.

(c) [3 points] If A is an invertible n by n matrix, then what can we say about the reduced echelon form of A.

Solution. It is the identity matrix I_n .

(d) [3 points] Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be the linear transformation given by

$$T(x_1, x_2, x_3, x_4) = (2x_1, -x_2, x_3, 3x_4).$$

Give $[T^{-1}]$.

Solution.

$$[T^{-1}] = [T]^{-1} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 1/2 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1/3 \end{bmatrix}.$$

(e) [3 points] Let T_A be the a linear transformation associated to the *m* by *n* matrix *A*. If T_A is onto, then what can we say about the rank of *A*? [If this rank is unrelated to whether or not T_A is onto, just say so.]

Solution. The rank must be m.

(f) [3 points] Is $\{1 + x^2, 2 - x^3, 1 + x + x^2 + x^3\}$ a basis of P_3 ? Justify your answer in one short sentence.

Solution. No, since dim $(P_3) = 4$ and we only have 3 vectors in the set.

(g) [3 points] If $B = {\mathbf{e}_1, \mathbf{e}_2}$ and $B' = {(1, 1), (2, 1)}$, find the transition matrix from B to B'.

Solution. The matrix is:

$$\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}^{-1} = \frac{1}{-1} \cdot \begin{bmatrix} 1 & -2 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix}.$$

(h) [3 points] If $S = \{(1,0,1), (-2,1,1), (0,0,3)\}$ is a basis of \mathbb{R}^3 , then the coordinates $((2,2,2))_S$ is given by the solution of what linear system? Give your answer in matrix form.

Solution.

$$\begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 3 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}.$$

4

- (i) [3 points] What is the dimension of M_{m×n}?
 Solution. It is m ⋅ n.
- (j) [3 points] Give the standard basis of P_3 .

Solution.
$$\{1, x, x^2, x^3\}$$
.

(k) [3 points] Let $S = {\mathbf{v}_1, \mathbf{v}_2}$ be an orthogonal, but not orthonormal, basis of a subspace W of V, and $\mathbf{v} \in V$, give the formula for $\operatorname{proj}_W \mathbf{v}$.

Solution.
$$\operatorname{proj}_{W} \mathbf{v} = \left(\frac{\mathbf{v}_{1}}{\|\mathbf{v}_{1}\|} \cdot \mathbf{v}\right) \frac{\mathbf{v}_{1}}{\|\mathbf{v}_{1}\|} + \left(\frac{\mathbf{v}_{2}}{\|\mathbf{v}_{2}\|} \cdot \mathbf{v}\right) \frac{\mathbf{v}_{2}}{\|\mathbf{v}_{1}\|}.$$

(1) [3 points] If A is a 5 by 4 matrix of rank 3, give the nullities of A and A^{T} .

Solution. Remember: rank plus nullity of A is the number of columns, so the nullity of A is 1. Also, rank plus nullity of A^{T} is the number of columns of A^{T} , which is the number of rows of A. Hence, nullity of A^{T} is 2.

(m) [3 points] What condition on the size of the matrix A guarantee that the system $A\mathbf{x} = \mathbf{0}$ has a non-trivial solution? [If there is no such condition, just say so.]

Solution. We need more variables than equations, so A must have more columns than rows. [So, if A is m by n, then we need n > m.]

4) [15 points] Let

$$A = \left[\begin{array}{rrrr} 1 & 1 & 3 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{array} \right].$$

(a) [3 points] Find the eigenvalues of A. [You do not need to justify this one.]

Solution. Since the matrix is upper triangular, the eigenvalues are the elements in the main diagonal: 1 and -2.

(b) [6 points] Find the eigenspaces associated to each eigenvalue.

Solution. For $\lambda = 1$ we have:

$$1 \cdot I_3 - A = \begin{bmatrix} 0 & -1 & -3 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

So, we have that the eigenspace associated to 1 is $span(\{(1,0,0)\})$.

For $\lambda = -2$, we have:

$$-2 \cdot I_3 - A = \begin{bmatrix} -3 & -1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1/3 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

So, we have that the eigenspace associated to -2 is span $(\{(-1/3, 1, 0), (-1, 0, 1)\})$.

(c) [6 points] Is A diagonalizable? If so, give P such that $P^{-1}AP$ is diagonal and the resulting diagonal form. [You do not need to justify in this case.] If not, explain why not.

Solution. Yes, since the dimensions of the eigenspaces add up to the number of rows. Then,

$$P = \begin{bmatrix} 1 & -1/3 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}.$$

5) [20 points] Let

$$\mathbf{v}_{1} = (4, -4, 2, 2, 4, 1, 17),$$

$$\mathbf{v}_{2} = (-1, 1, -1, 1, -1, -1, -6),$$

$$\mathbf{v}_{3} = (3, -3, 2, 0, 3, 1, 14),$$

$$\mathbf{v}_{4} = (10, -10, 5, 5, 10, 3, 43),$$

$$\mathbf{v}_{5} = (2, -2, 1, 1, 2, 1, 9),$$

and $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5}$, and $V = \operatorname{span}(S)$. Given that

\mathbf{v}_1		1	-1	0	2	1	0	3
\mathbf{v}_2		0	0	1	-3	0	0	2
\mathbf{v}_3	\sim	0		0		0	1	1
\mathbf{v}_4		0	0	0	0	0	0	0
$egin{array}{c c} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_5 \end{array}$		0	0	0	0	0	0	0

and

answer the questions below. [You do not need to justify any of the items below.]

(a) [5 points] What are the dimension of V and V^{\perp} [the orthogonal complement of V in \mathbb{R}^7]?

Solution. The dimension of V is the number of leading ones in either matrix in echelon form above, so it is 3.

The dimension of V^{\perp} is the number of columns without leading ones in the *first* matrix, so it is 4.

(b) [5 points] Find a basis for V.

Solution. We can take either the first three rows of the first matrix in echelon form, or $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ [using the second matrix in echelon form].

(c) [4 points] Find a basis of V^{\perp} .

Solution. The basis can be found by finding a basis for the nullspace of the first matrix:

$\begin{bmatrix} x_1 \end{bmatrix}$]	$\begin{bmatrix} r-2s-t-3u \end{bmatrix}$		[1]		[-2]		-1		-3	
x_2		r		1		0		0		0	
x_3		3s-2u		0		3		0		-2	
x_4	=	s	= r	0	+s	1	+t	0	+u	0	
x_5		t		0		0		1		0	
x_6		-u		0		0		0		-1	
x_7		u		0		0		0		1	

The column vectors in evidence above form the desired basis.

(d) [5 points] If possible, find a non-trivial linear combination [i.e., not all coefficients equal to zero] of the elements of S which give the zero vector of \mathbb{R}^7 . [Hint: Start by writing a vector of S as a linear combination of the others.]

Solution. Using the second matrix in echelon form, and denoting its columns by \mathbf{c}_1 to \mathbf{c}_5 , we can easily see that $\mathbf{c}_5 = \mathbf{c}_1 - \mathbf{c}_2 - \mathbf{c}_3$. Thus, $\mathbf{v}_5 = \mathbf{v}_1 - \mathbf{v}_2 - \mathbf{v}_3$. Thus,

$$1 \cdot \mathbf{v}_1 + (-1) \cdot \mathbf{v}_2 + (-1) \cdot \mathbf{v}_3 + 0 \cdot \mathbf{v}_4 + (-1) \cdot \mathbf{v}_5 = \mathbf{0}$$

(e) [5 points] Which vectors from the standard basis of \mathbb{R}^7 you can add to the vectors in the basis of V you've found above to obtain a basis of all of \mathbb{R}^7 ?

Solution. We just add standard basis vectors with leading ones in columns which have no leading ones in the first matrix in echelon form. So, we add $\{\mathbf{e}_2, \mathbf{e}_4, \mathbf{e}_5, \mathbf{e}_7\}$.