1) [20 points] Quickies! [These should take you 10 seconds each if you've studied.] You don't need to justify your answers.
(a) If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a one-to-one linear transformation, then what can we say about the matrix $[T]$?

Solution. $[T]$ is invertible, or $\operatorname{det}([T]) \neq 0$.
(b) If $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is such that $T\left(\mathbf{e}_{1}\right)=(2,1), T\left(\mathbf{e}_{2}\right)=(1,0)$, and $T\left(\mathbf{e}_{3}\right)=(-1,3)$, what is $[T]$?

Solution.

$$
[T]=\left[\begin{array}{lll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & T\left(\mathbf{e}_{3}\right)
\end{array}\right]=\left[\begin{array}{rrr}
2 & 1 & -1 \\
1 & 0 & 3
\end{array}\right]
$$

(c) If A is an m by n matrix, then what are the domain and codomain of the linear transformation T_{A} ?

Solution. Domain: \mathbb{R}^{n}. Codomain: \mathbb{R}^{m}.
(d) If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is linear with $T(\mathbf{u})=2$ and $T(\mathbf{v})=3$, then what is $T(\mathbf{u}+2 \mathbf{v})$?

Solution. $T(\mathbf{u}+2 \mathbf{v})=T(\mathbf{u})+T(2 \mathbf{v})=T(\mathbf{u})+2 T(\mathbf{v})=8$.
(e) If the projection of \mathbf{v} on the direction of \mathbf{u} is $(2,0,3)$ and the component of \mathbf{v} orthogonal to \mathbf{u} is $(-1,1,-2)$, then what is \mathbf{v} ? [This is easier than it might seem at first! There is very little computation involved!]

Solution. We have $\mathbf{v}=(2,0,3)+(-1,1,-2)=(1,1,1)$. [Draw a picture!]
2) [15 points] Let $\mathbf{u}=(1,1,3)$ and $\mathbf{v}=(0,-2,0)$.
(a) Find the cosine of the angle between \mathbf{u} and \mathbf{v}.

Solution.

$$
\cos (\theta)=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}=\frac{-2}{\sqrt{11} \sqrt{4}}=-\frac{\sqrt{11}}{11}
$$

(b) Compute $\operatorname{proj}_{\mathbf{u}} \mathbf{v}$.

Solution.

$$
\operatorname{proj}_{\mathbf{u}} \mathbf{v}=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u}=\frac{-2}{11} \cdot(1,1,3)=\left(-\frac{2}{11},-\frac{2}{11},-\frac{6}{11}\right) .
$$

3) [15 points] Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the reflection about the line $y=2 x$.
(a) Find all eigenvalues and the eigenvectors associated to each eigenvalue.

Solution. As with all other reflexions [see the text or notes for reflexions on the axes], we have that the only eigenvalues are 1 and -1 , with the eigenvectors associated to 1 exactly the non-zero vectors on the line, i.e., vectors of the form $(a, 2 a)$, for $a \in \mathbb{R}-\{0\}$, and eigenvectors associated to -1 exactly the non-zero vectors perpendicular to the line, i.e., vectors of the form $(-2 a, a)$, for $a \in \mathbb{R}-\{0\}$.
[Think about it geometrically! Again, this is exactly like the example of reflexions about the coordinate axes done in class and in the book.]
(b) Is the matrix $[T]$ invertible? [Justify!]

Solution. We have that T is invertible, as if you reflect about the same line twice, we get the original vector back. [I.e., T is its own inverse, or, in symbols, $T=T^{-1}$.] Hence, $[T]$ is an invertible matrix. [In fact $[T]^{1}=\left[T^{-1}\right]=[T]$, so the inverse of $[T]$ is also [$T]$.]
4) [15 points] Let $S=\{(2,3,6),(4,1,7),(6,2,11)\}$. This set is not linearly independent and does not span \mathbb{R}^{3}. [Just take my word for it!] Find a linear combination of the vectors of S that give the zero vector with at least one coefficient being non-zero and a vector not in $\operatorname{span}(S)$.
[Hint: You've done both in HW. You can solve both questions together here!]
Solution.

$$
\begin{aligned}
{\left[\begin{array}{rrr|r|r}
2 & 4 & 6 & 0 & a \\
3 & 1 & 2 & 0 & b \\
6 & 7 & 11 & 0 & c
\end{array}\right] } & \sim\left[\begin{array}{rrr|r|r}
1 & 2 & 3 & 0 & a / 2 \\
3 & 1 & 2 & 0 & b \\
6 & 7 & 11 & 0 & c
\end{array}\right] \sim \\
& {\left[\begin{array}{rrr|r|r}
1 & 2 & 3 & 0 & a / 2 \\
0 & -5 & -7 & 0 & b-3 a / 2 \\
0 & -5 & -7 & 0 & c-3 a
\end{array}\right] \sim\left[\begin{array}{rrr|r|r}
1 & 2 & 3 & 0 & a / 2 \\
0 & -5 & -7 & 0 & b-3 a / 2 \\
0 & 0 & 0 & 0 & c-b-3 a / 2
\end{array}\right] }
\end{aligned}
$$

This gives us that, for instance $(1,0,0)$ is not in the range, as $0-0-3 / 2 \neq 0$. So, we continue only with the homogeneous part now:

$$
\left[\begin{array}{rrr|r}
1 & 2 & 3 & 0 \\
0 & 1 & 7 / 5 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{rrr|r}
1 & 0 & 1 / 5 & 0 \\
0 & 1 & 7 / 5 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

So, we have a solution $x_{1}=-t / 5, x_{2}=-7 t / 5$, and $x_{3}=t$. To find a non-zero solution, we just take some $t \neq 0$, say $t=5$. Then, we have:

$$
-(2,3,6)-7(4,1,7)+5(6,2,11)=(0,0,0)
$$

5) $[15$ points $]$ Is the set of all 2 by 2 matrices of the form

$$
\left[\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right], \quad \text { with } a, b \in \mathbb{R}
$$

a vector space with the usual addition and scalar multiplication of matrices? [Justify!]
Solution. Yes! We have that this set is a subset of the vector space $M_{2 \times 2}$ [or M_{22}, as the book writes], and hence it suffices to check it is a subspace. Let's call the given set V. [Note that V is just the set of all 2 by 2 diagonal matrices.]

We clearly have that the zero matrix is in V, as we can take $a=b=0$.
We have that

$$
\left[\begin{array}{cc}
a_{1} & 0 \\
0 & b_{1}
\end{array}\right]+\left[\begin{array}{cc}
a_{2} & 0 \\
0 & b_{2}
\end{array}\right]=\left[\begin{array}{cc}
a_{1}+a_{2} & 0 \\
0 & b_{1}+b_{2}
\end{array}\right] \in V
$$

[as it is a diagonal matrix].
Finally we also have

$$
k\left[\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right]=\left[\begin{array}{cc}
k a & 0 \\
0 & k b
\end{array}\right] \in V
$$

[as it is a diagonal matrix].
6) [20 points] Let $V=(0,+\infty)$ [i.e., all positive real numbers] with the following operations:

$$
x \oplus y=x y, \quad k \odot x=x^{k} \quad[x, y \in V, k \in \mathbb{R}]
$$

[Just like in your HW! I am using " \oplus " and " \odot " to denote the sum and scalar multiplication to avoid confusion with the regular operations, though.] The set V with these operations is a vector space. [Take my word for it.]
(a) Check that $k \odot(x \oplus y)=(k \odot x) \oplus(k \odot y)$.

Solution. We have

$$
\begin{aligned}
k \odot(x \oplus y) & =k \odot(x y) \\
& =(x y)^{k} \\
& =x^{k} y^{k} \\
& =(k \odot x)(k \odot y) \\
& =(k \odot x) \oplus(k \odot y)
\end{aligned}
$$

(b) What is the "zero" of this vector space [i.e., the element $\theta \in V$ such that $\theta \oplus x=x$ for all $x \in V]$?

Solution. It is 1 , as $1 \oplus x=x^{1}=x$ for all $x \in V$.
(c) Given $x \in V$, what is its "negative" of x [i.e., the element $y \in V$ such that $x \oplus y=\theta$, where θ is the zero from the previous item]?

Solution. It is x^{-1}. [Note that since $V=(0,+\infty)$, we have that $x^{-1}=1 / x$ is always valid, as we will not get a zero in the denominator.] Then, $x \oplus x^{-1}=x x^{-1}=1$.

