1) [20 points] Quickies! [These should take you 10 seconds each if you've studied.] You don't need to justify your answers.
(a) If a square matrix is not invertible, what can we say about its reduced row echelon form? [Simple and short answer!]
Answer: It has a row of zeros. [Or, it has a column with no leading one, or it is not the identity. All are valid.]
(b) $\left|\begin{array}{rrrr}2 & \sqrt{3} & -\pi & 12 / 131 \\ 0 & -1 & \mathrm{e}^{2} & \ln (10) \\ 0 & 0 & 7 & \cos (3) \\ 0 & 0 & 0 & 1\end{array}\right|=$

Answer: $=2 \cdot(-1) \cdot 7 \cdot 1=-14$. [Determinant of upper triangular matrix.]
(c) $\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3\end{array}\right] \cdot\left[\begin{array}{rrr}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 5\end{array}\right]=$

Answer: $=\left[\begin{array}{rrr}2 & -1 & 5 \\ 4 & -2 & 10 \\ 6 & -3 & 15\end{array}\right]$ [Multiplication by diagonal matrix.]
(d) If $E \cdot\left[\begin{array}{rrr}2 & -1 & 3 \\ 0 & 2 & 0 \\ 5 & -4 & 1\end{array}\right]=\left[\begin{array}{rrr}2 & -1 & 3 \\ -5 & 6 & -1 \\ 5 & -4 & 1\end{array}\right]$, then $E=$ Answer: $=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right]$. [Multiplication by elementary matrix.]
(e) If $\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=3$, then $\left|\begin{array}{ccc}g & h & i \\ d-g & e-h & f-i \\ 5 a & 5 b & 5 c\end{array}\right|=$

Answer: $3 \cdot(-1) \cdot 5 \cdot 1=-15[($ switch 1 st and 3rd rows), (multiply 3rd row by 5), (add -1 times the 1 st row to the 2 nd)].
2) $[15$ points $]$ Let

$$
A=\left[\begin{array}{rr}
1 & 0 \\
1 & -1 \\
3 & 1
\end{array}\right], \quad B=\left[\begin{array}{rr}
2 & -1 \\
1 & 0 \\
0 & 2
\end{array}\right]
$$

Compute $\operatorname{tr}\left(\left(A^{\mathrm{T}} \cdot B\right)^{-1}\right)$.

Solution. We have:

$$
A^{\mathrm{T}}=\left[\begin{array}{rrr}
1 & 1 & 3 \\
0 & -1 & 1
\end{array}\right], \quad A^{\mathrm{T}} \cdot B=\left[\begin{array}{rr}
3 & 5 \\
-1 & 2
\end{array}\right], \quad\left(A^{\mathrm{T}} \cdot B\right)^{-1}=\frac{1}{11}\left[\begin{array}{rr}
2 & -5 \\
1 & 3
\end{array}\right]
$$

So, $\operatorname{tr}\left(\left(A^{\mathrm{T}} \cdot B\right)^{-1}\right)=2 / 11+3 / 11=5 / 11$.
3) [15 points] Let

$$
A=\left[\begin{array}{rrr}
2 & 0 & 1 \\
-2 & 1 & 3 \\
1 & 1 & 1
\end{array}\right]
$$

Find C_{21}, the cofactor of A at position $(2,1)$ [or at a_{21}, as the book writes] and $(\operatorname{adj}(A))_{12}$, i.e., the entry at position $(1,2)$ of the adjoint of A.

Solution. We have:

$$
C_{21}=(-1)^{2+1}\left|\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right|=(-1) \cdot(-1)=1 .
$$

Since $\operatorname{adj}(A)=\left(C_{i j}\right)^{\mathrm{T}}$ [i.e., $(\operatorname{adj}(A))_{i j}=C_{j i}$], we have that the entry at position $(1,2)$ of the adjoint is $C_{21}=1$.
4) [25 points] Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 3 \\
1 & 0 & 8
\end{array}\right]
$$

Find $\operatorname{det}\left(2 \cdot A^{6}\right)$ and A^{-1}. [Don't work harder than you have to!]

Solution. Finding the inverse of A is Example 4 on pg. 55. [Just look at the solution there.] We have:

$$
A^{-1}=\left[\begin{array}{rrr}
-40 & 16 & 9 \\
13 & -5 & -3 \\
5 & -2 & -1
\end{array}\right]
$$

To find the determinant of A [not of $2 \cdot A^{6}$ yet] we may simply see what were the row operations used: looking at the text, we see that the only operation that changes the determinant is one multiplication by -1 . So the determinant of A is -1 .

Hence, $\operatorname{det}\left(2 \cdot A^{6}\right)=2^{3} \operatorname{det}\left(A^{6}\right)=8 \cdot(\operatorname{det}(A))^{6}=8 \cdot(-1)^{6}=8$.
5) [25 points] Let

$$
A=\left[\begin{array}{rrrr}
2 & 4 & 1 & 0 \\
1 & 2 & 0 & 0 \\
-1 & -2 & -1 & 1 \\
4 & 8 & 2 & -1
\end{array}\right], \quad \mathbf{b}_{1}=\left[\begin{array}{c}
2 \\
1 \\
2 \\
1
\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{r}
0 \\
-1 \\
-3 \\
-1
\end{array}\right]
$$

Solve the systems $A \mathbf{x}=\mathbf{b}_{1}$ and $A \mathbf{x}=\mathbf{b}_{2}$.

Solution. We solve the systems together:

$$
\begin{aligned}
{\left[\begin{array}{rrrr|r|r}
2 & 4 & 1 & 0 & 2 & 0 \\
1 & 2 & 0 & 0 & 1 & -1 \\
-1 & -2 & -1 & 1 & 2 & -3 \\
4 & 8 & 2 & -1 & 1 & -1
\end{array}\right] } & \sim\left[\begin{array}{rrrr|r|r}
1 & 2 & 0 & 0 & 1 & -1 \\
2 & 4 & 1 & 0 & 2 & 0 \\
-1 & -2 & -1 & 1 & 2 & -3 \\
4 & 8 & 2 & -1 & 1 & -1
\end{array}\right] \\
& \sim\left[\begin{array}{rrrrr|r|r}
1 & 2 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & 0 & 0 & 2 \\
0 & 0 & -1 & 1 & 3 & -4 \\
0 & 0 & 2 & -1 & -3 & 3
\end{array}\right] \\
& \sim\left[\begin{array}{rrrr|r|r}
1 & 2 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & 0 & 0 & 2 \\
0 & 0 & 0 & 1 & 3 & -2 \\
0 & 0 & 0 & -1 & -2 & -1
\end{array}\right] \sim\left[\begin{array}{llll|r|r}
1 & 2 & 0 & 0 & 1 & -1 \\
0 & 0 & 1 & 0 & 0 & 2 \\
0 & 0 & 0 & 1 & 3 & -2 \\
0 & 0 & 0 & 0 & 0 & -3
\end{array}\right]
\end{aligned}
$$

Hence, the second system has no solution [last row gives $0=-3$], and the first system has solution:

$$
x_{1}=1-2 t, \quad x_{2}=t, \quad x_{3}=0, \quad x_{4}=3,
$$

where t can be any real number [free parameter].

