MIDTERM SOLUTION

M559 - LINEAR ALGEBRA

1. Let V be a vector space over the field F. Prove that if $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subseteq V$ is such that $V=\operatorname{span}(S)$, but for all $i \in\{1,2, \ldots, n\}$ we have that $V \neq \operatorname{span}\left(S \backslash\left\{v_{i}\right\}\right)$, then S is a basis of V.

Proof. Short proof:
It suffices to show that S is linearly independent. So, assume it is not. Then, since $\operatorname{span}(S)=V$ and S is linearly dependent, we have can remove some vector $v_{i} \in S$ and still have that $\operatorname{span}\left(S \backslash\left\{v_{i}\right\}\right)=\operatorname{span}(S)=V$. [This was proved in class: we can always remove an element of a linearly dependent set without changing the space that they generate.] But this is a contradiction, so S must be linearly independent.

Alternative proof: We can basically replicate the proof of the statement mentioned above.

It suffices to show that S is linearly independent. So, assume that there $c_{1}, \ldots, c_{n} \in$ F such that

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}=\overrightarrow{0} .
$$

If $c_{i} \neq 0$, then

$$
v_{i}=-\frac{c_{1}}{c_{i}} v_{1}-\frac{c_{2}}{c_{i}} v_{2}-\cdots-\frac{c_{i-1}}{c_{i}} v_{i-1}-\frac{c_{i+1}}{c_{i}} v_{i+1}-\cdots-\frac{c_{n}}{c_{i}} v_{n},
$$

and hence $v_{i} \in \operatorname{span}\left(S \backslash\left\{v_{i}\right\}\right)$, and hence $\operatorname{span}\left(S \backslash\left\{v_{i}\right\}\right)=\operatorname{span}(S)=V$, a contradiction. Hence we must have that $c_{i}=0$. Since i was arbitrary, we have $c_{1}=c_{2}=\cdots=c_{n}=0$.
2. Let V and W be vector spaces over the field F of [finite] dimensions n and m respectively, $T: V \rightarrow W$ and $S: W \rightarrow V$ be linear transformations such that $T \circ S$ and $S \circ T$ are the identity maps of W and V respectively.
(a) Show that both T and S are onto.

Proof. Short proof: We have that T and S are inverses of each other, so they are bijections, and in particular, they are onto.

Alternative proof: We can prove the onto part of the above result directly:
Let $w \in W$. Then $w=(T \circ S)(w)=T(S(w))$, so $w \in \operatorname{im}(T)$.
Similarly, if $v \in V$. Then $v=(S \circ T)(v)=S(T(v))$, so $v \in \operatorname{im}(S)$.
(b) Show that $m=n$.

Proof. Short proof: If you proved that T and S are bijections, then they are isomorphisms, so V and W are isomorphic and isomorphic spaces have the same dimension.

Alternative proof: Since T is onto we have that $\operatorname{rank}(T)=\operatorname{dim} W=m$. So, $0 \leq \operatorname{dim} \operatorname{ker}(T)=n-\operatorname{rank}(T)=n-m$, and hence $n \geq m$.
Similarly, since S is onto we have that $\operatorname{rank}(S)=\operatorname{dim} V=n$. So, $0 \leq$ $\operatorname{dim} \operatorname{ker}(S)=m-\operatorname{rank}(S)=m-n$, and hence $m \geq n$. These two inequalities give that $m=n$.
3. Let V be a vector space over F [possibly infinite dimensional] and $f \in V^{*} \backslash\{0\}$. Let v_{0} such that $f\left(v_{0}\right) \neq 0$ and $N \stackrel{\text { def }}{=} \operatorname{ker}(f)$. Prove that for all $v \in V$ there are unique $c \in F$ and $w \in N$ such that $v=c v_{0}+w$.
[Hint: Take $v \in V$ and find some $c \in F$ such that $f\left(v-c v_{0}\right)=0$.]
Proof. Short proof: We've seen in class that N [as above] is a hyperspace, so for all $w \notin N$, we have that $V=\operatorname{span}(\{w\})+N$. In particular, since $v_{0} \notin N$, we have that $V=\operatorname{span}\left(\left\{v_{0}\right\}\right)+W$, so for all $v \in V$, there are $c \in F$ and $w \in N$ such that $v=c v_{0}+w$.

Now suppose that $c, c^{\prime} \in F$ and $w, w^{\prime} \in N$ are such that $c v_{0}+w=c^{\prime} v_{0}+w^{\prime}$. Then, $\left(c-c^{\prime}\right) v_{0}=w^{\prime}-w \in N$. Hence,

$$
0=f\left(w^{\prime}-w\right)=f\left(\left(c-c^{\prime}\right) v_{0}\right)=\left(c-c_{0}\right) f\left(v_{0}\right)
$$

and since $f\left(v_{0}\right) \neq 0$, we must have that $c=c^{\prime}$. But then $\overrightarrow{0}=w^{\prime}-w$, i..e. $w=w^{\prime}$.

Alternative proof: Since $f\left(v_{0}\right) \neq 0$, we have that

$$
f\left(v-\frac{f(v)}{f\left(v_{0}\right) v_{0}}\right)=f(v)-\frac{f(v)}{f\left(v_{0}\right)} f\left(v_{0}\right)=f(v)-f(v)=0 .
$$

So, if $c \stackrel{\text { def }}{=} \frac{f(v)}{f\left(v_{0}\right)}$, then $w \stackrel{\text { def }}{=} v-c v_{0} \in N$. Then, $v=c v_{0}+w$.
The proof uniqueness is the same as above.

