
MIDTERM SOLUTION

M559 – LINEAR ALGEBRA

1. Let V be a vector space over the field F . Prove that if S = {v1, v2, . . . , vn} ⊆ V is

such that V = span(S), but for all i ∈ {1, 2, . . . , n} we have that V ̸= span(S \ {vi}),
then S is a basis of V .

Proof. Short proof:

It suffices to show that S is linearly independent. So, assume it is not. Then, since

span(S) = V and S is linearly dependent, we have can remove some vector vi ∈ S

and still have that span(S \ {vi}) = span(S) = V . [This was proved in class: we can

always remove an element of a linearly dependent set without changing the space

that they generate.] But this is a contradiction, so S must be linearly independent.

Alternative proof: We can basically replicate the proof of the statement mentioned

above.

It suffices to show that S is linearly independent. So, assume that there c1, . . . , cn ∈
F such that

c1v1 + c2v2 + · · ·+ cnvn = 0⃗.

If ci ̸= 0, then

vi = −c1
ci
v1 −

c2
ci
v2 − · · · − ci−1

ci
vi−1 −

ci+1

ci
vi+1 − · · · − cn

ci
vn,

and hence vi ∈ span(S \ {vi}), and hence span(S \ {vi}) = span(S) = V , a con-

tradiction. Hence we must have that ci = 0. Since i was arbitrary, we have

c1 = c2 = · · · = cn = 0.

□

2. Let V and W be vector spaces over the field F of [finite] dimensions n and m respec-

tively, T : V → W and S : W → V be linear transformations such that T ◦ S and

S ◦ T are the identity maps of W and V respectively.

(a) Show that both T and S are onto.

Proof. Short proof: We have that T and S are inverses of each other, so they

are bijections, and in particular, they are onto.
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Alternative proof: We can prove the onto part of the above result directly:

Let w ∈ W . Then w = (T ◦ S)(w) = T (S(w)), so w ∈ im(T ).

Similarly, if v ∈ V . Then v = (S ◦ T )(v) = S(T (v)), so v ∈ im(S). □

(b) Show that m = n.

Proof. Short proof: If you proved that T and S are bijections, then they are

isomorphisms, so V and W are isomorphic and isomorphic spaces have the same

dimension.

Alternative proof: Since T is onto we have that rank(T ) = dimW = m. So,

0 ≤ dimker(T ) = n− rank(T ) = n−m, and hence n ≥ m.

Similarly, since S is onto we have that rank(S) = dimV = n. So, 0 ≤
dimker(S) = m − rank(S) = m − n, and hence m ≥ n. These two inequal-

ities give that m = n. □

3. Let V be a vector space over F [possibly infinite dimensional] and f ∈ V ∗ \ {0}. Let
v0 such that f(v0) ̸= 0 and N

def
= ker(f). Prove that for all v ∈ V there are unique

c ∈ F and w ∈ N such that v = cv0 + w.

[Hint: Take v ∈ V and find some c ∈ F such that f(v − cv0) = 0.]

Proof. Short proof: We’ve seen in class that N [as above] is a hyperspace, so for all

w ̸∈ N , we have that V = span({w}) + N . In particular, since v0 ̸∈ N , we have

that V = span({v0}) + W , so for all v ∈ V , there are c ∈ F and w ∈ N such that

v = cv0 + w.

Now suppose that c, c′ ∈ F and w,w′ ∈ N are such that cv0+w = c′v0+w′. Then,

(c− c′)v0 = w′ − w ∈ N . Hence,

0 = f(w′ − w) = f((c− c′)v0) = (c− c0)f(v0),

and since f(v0) ̸= 0, we must have that c = c′. But then 0⃗ = w′ − w, i..e. w = w′.

Alternative proof: Since f(v0) ̸= 0, we have that

f

(
v − f(v)

f(v0)v0

)
= f(v)− f(v)

f(v0)
f(v0) = f(v)− f(v) = 0.

So, if c
def
=

f(v)

f(v0)
, then w

def
= v − cv0 ∈ N . Then, v = cv0 + w.

The proof uniqueness is the same as above.

□


