
1) Give the set of units [i.e., invertible elements] for the rings below. [These don’t need to

be justified, but if there are no justifications, I cannot give partial credit.]

(a) [5 points] Z

(b) [5 points] R

(c) [5 points] F13

(d) [10 points] I15 [same as Z/15Z].

Solution. (a) {±1}

(b) R \ {0}

(c) F13 \ {0}

(d) I15 = {1, 2, 4, 7, 8, 11, 13, 14}.

2) [25 points] Prove that the prime field of R is Q.

[Hint: This was a HW problem.]

Proof. Let F be the prime field of R. Since Q is a subfield of R, by the minimality of the

field of fractions, F ⊆ Q.

Now, since F is a subring of R, we have that 1 ∈ F , and hence, since it is a ring, we have

that Z ⊆ F [as F is closed under sums and subtractions]. But this implies that the field of

fractions of Z, namely Q, is contained in F [by the minimality of the field of fractions].

With the two inclusions we get F = Q.
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3) [25 points] Prove that

Z[
3
√

2]
def
= {a+ b

3
√

2 + c
3
√

4 : a, b, c ∈ Z}

is a domain.

[Hint: There is a hard and an easy way to do this. Part of this was done in class.]

Proof. It suffices to show that Z[ 3
√

2] is a subring of R.

First,

1 = 1 + 0 · 3
√

2 + 0 · 3
√

4 ∈ Z[
3
√

2].

Also, let α, β ∈ Z[ 3
√

2]. Then, α = a1 + b1
3
√

2 + c1
3
√

4, β = a2 + b2
3
√

2 + c2
3
√

4 for some

a1, a2, b1, b2, c1, c2 ∈ Z. Then:

α− β = (a1 + b1
3
√

2 + c1
3
√

4)− (a2 + b2
3
√

2 + c2
3
√

4) = (a1− a2) + (b1− b2) · 3
√

2 + (c1− c2) 3
√

4.

Since a1 − a2, b1 − b2, c1 − c2 ∈ Z [since Z is closed under subtractions], we have that

α− β ∈ Z[ 3
√

2].

Finally,

α · β = (a1 + b1
3
√

2 + c1
3
√

4) · (a2 + b2
3
√

2 + c2
3
√

4)

= (a1a2 + 2b1c2 + 2c1b2) + (a1b2 + b1a2 + 2c1c2)
3
√

2 + (a1c2 + b1b2 + c1a2)
3
√

4.

Since Z is closed under sums and products, we have that α · β ∈ Z[ 3
√

2].

The three steps above show that Z[ 3
√

2] is a subring of R. Since R is a field, every subring

of R is a domain. Hence, Z[ 3
√

2] is a domain.

2



4) [25 points] Prove, using only the axioms for commutative rings [listed on the last page],

that if R is a commutative ring, then for all a ∈ R we have that a ·0 = 0. You have to justify

every step of your proof !

[Hints: This was done in class! Use Axiom 3 to write 0 = 0 + 0. Be careful to use the

associative [Axiom 2] and commutative [Axiom 1] when necessary!]

Proof. By Axiom 3, we have that 0 = 0 + 0. Then:

a · 0 = a · (0 + 0) = a · 0 + a · 0, (1)

using Axiom 8. Then:

0 = a · 0 + (−(a · 0)) [by Axiom 4]

= (a · 0 + a · 0) + (−(a · 0)) [by Eq. (1)]

= a · 0 + (a · 0 + (−(a · 0))) [by Axiom 2]

= a · 0 + 0 [by Axiom 4]

= a · 0 [by Axiom 3].

Commutative Ring Axioms: A [non-empty] set with two operations, + and ·, is a com-

mutative ring if:

0. For all a, b ∈ R we have that a+ b ∈ R and a · b ∈ R.

1. For all a, b ∈ R we have that a+ b = b+ a.

2. For all a, b, c ∈ R we have that (a+ b) + c = a+ (b+ c).

3. There exists 0 ∈ R such that for all a ∈ R we have a+ 0 = a.

4. For all a ∈ R there exists −a ∈ R such that a+ (−a) = 0.

5. For all a, b ∈ R we have that a · b = b · a.

6. For all a, b, c ∈ R we have that (a · b) · c = a · (b · c)

7. There is 1 ∈ R such that for all a ∈ R we have that 1 · a = a

8. For all a, b, c ∈ R we have that a · (b+ c) = a · b+ a · c
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