1) Give the set of units [i.e., invertible elements] for the rings below. [These don't need to be justified, but if there are no justifications, I cannot give partial credit.]
(a) $[5$ points $] \mathbb{Z}$
(b) $[5$ points $] \mathbb{R}$
(c) $[5$ points $] \mathbb{F}_{13}$
(d) $[10$ points $] \mathbb{I}_{15}$ [same as $\left.\mathbb{Z} / 15 \mathbb{Z}\right]$.

Solution. (a) $\{ \pm 1\}$
(b) $\mathbb{R} \backslash\{0\}$
(c) $\mathbb{F}_{13} \backslash\{0\}$
(d) $\mathbb{I}_{15}=\{1,2,4,7,8,11,13,14\}$.
2) [25 points] Prove that the prime field of \mathbb{R} is \mathbb{Q}.
[Hint: This was a HW problem.]
Proof. Let F be the prime field of \mathbb{R}. Since \mathbb{Q} is a subfield of \mathbb{R}, by the minimality of the field of fractions, $F \subseteq \mathbb{Q}$.
Now, since F is a subring of \mathbb{R}, we have that $1 \in F$, and hence, since it is a ring, we have that $\mathbb{Z} \subseteq F$ [as F is closed under sums and subtractions]. But this implies that the field of fractions of \mathbb{Z}, namely \mathbb{Q}, is contained in F [by the minimality of the field of fractions]. With the two inclusions we get $F=\mathbb{Q}$.
3) [25 points] Prove that

$$
\mathbb{Z}[\sqrt[3]{2}] \stackrel{\text { def }}{=}\{a+b \sqrt[3]{2}+c \sqrt[3]{4}: a, b, c \in \mathbb{Z}\}
$$

is a domain.
[Hint: There is a hard and an easy way to do this. Part of this was done in class.]
Proof. It suffices to show that $\mathbb{Z}[\sqrt[3]{2}]$ is a subring of \mathbb{R}.
First,

$$
1=1+0 \cdot \sqrt[3]{2}+0 \cdot \sqrt[3]{4} \in \mathbb{Z}[\sqrt[3]{2}]
$$

Also, let $\alpha, \beta \in \mathbb{Z}[\sqrt[3]{2}]$. Then, $\alpha=a_{1}+b_{1} \sqrt[3]{2}+c_{1} \sqrt[3]{4}, \beta=a_{2}+b_{2} \sqrt[3]{2}+c_{2} \sqrt[3]{4}$ for some $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} \in \mathbb{Z}$. Then:
$\alpha-\beta=\left(a_{1}+b_{1} \sqrt[3]{2}+c_{1} \sqrt[3]{4}\right)-\left(a_{2}+b_{2} \sqrt[3]{2}+c_{2} \sqrt[3]{4}\right)=\left(a_{1}-a_{2}\right)+\left(b_{1}-b_{2}\right) \cdot \sqrt[3]{2}+\left(c_{1}-c_{2}\right) \sqrt[3]{4}$.
Since $a_{1}-a_{2}, b_{1}-b_{2}, c_{1}-c_{2} \in \mathbb{Z}$ [since \mathbb{Z} is closed under subtractions], we have that $\alpha-\beta \in \mathbb{Z}[\sqrt[3]{2}]$.
Finally,

$$
\begin{aligned}
\alpha \cdot \beta=\left(a_{1}\right. & \left.+b_{1} \sqrt[3]{2}+c_{1} \sqrt[3]{4}\right) \cdot\left(a_{2}+b_{2} \sqrt[3]{2}+c_{2} \sqrt[3]{4}\right) \\
& =\left(a_{1} a_{2}+2 b_{1} c_{2}+2 c_{1} b_{2}\right)+\left(a_{1} b_{2}+b_{1} a_{2}+2 c_{1} c_{2}\right) \sqrt[3]{2}+\left(a_{1} c_{2}+b_{1} b_{2}+c_{1} a_{2}\right) \sqrt[3]{4}
\end{aligned}
$$

Since \mathbb{Z} is closed under sums and products, we have that $\alpha \cdot \beta \in \mathbb{Z}[\sqrt[3]{2}]$.
The three steps above show that $\mathbb{Z}[\sqrt[3]{2}]$ is a subring of \mathbb{R}. Since \mathbb{R} is a field, every subring of \mathbb{R} is a domain. Hence, $\mathbb{Z}[\sqrt[3]{2}]$ is a domain.
4) [25 points] Prove, using only the axioms for commutative rings [listed on the last page], that if R is a commutative ring, then for all $a \in R$ we have that $a \cdot 0=0$. You have to justify every step of your proof!
[Hints: This was done in class! Use Axiom 3 to write $0=0+0$. Be careful to use the associative [Axiom 2] and commutative [Axiom 1] when necessary!]

Proof. By Axiom 3, we have that $0=0+0$. Then:

$$
\begin{equation*}
a \cdot 0=a \cdot(0+0)=a \cdot 0+a \cdot 0 \tag{1}
\end{equation*}
$$

using Axiom 8. Then:

$$
\begin{aligned}
0 & =a \cdot 0+(-(a \cdot 0)) & & {[\text { by Axiom } 4] } \\
& =(a \cdot 0+a \cdot 0)+(-(a \cdot 0)) & & {[\text { by Eq. }(1)] } \\
& =a \cdot 0+(a \cdot 0+(-(a \cdot 0))) & & {[\text { by Axiom } 2] } \\
& =a \cdot 0+0 & & {[\text { by Axiom } 4] } \\
& =a \cdot 0 & & {[\text { by Axiom } 3] . }
\end{aligned}
$$

Commutative Ring Axioms: A [non-empty] set with two operations, + and \cdot, is a commutative ring if:

0 . For all $a, b \in R$ we have that $a+b \in R$ and $a \cdot b \in R$.

1. For all $a, b \in R$ we have that $a+b=b+a$.
2. For all $a, b, c \in R$ we have that $(a+b)+c=a+(b+c)$.
3. There exists $0 \in R$ such that for all $a \in R$ we have $a+0=a$.
4. For all $a \in R$ there exists $-a \in R$ such that $a+(-a)=0$.
5. For all $a, b \in R$ we have that $a \cdot b=b \cdot a$.
6. For all $a, b, c \in R$ we have that $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
7. There is $1 \in R$ such that for all $a \in R$ we have that $1 \cdot a=a$
8. For all $a, b, c \in R$ we have that $a \cdot(b+c)=a \cdot b+a \cdot c$
