# Midterm 3 

Math 351 - Spring 2020
March 25th, 2020

## Instructions

- Write neatly and legibly!
- Your camera must be on at all times and showing you properly. (You can only leave Zoom when you are done!)
- Leave the sound on, so that you can hear incoming private messages or if I need to say something to all.
- You do not need to copy the statements. Just number your answers.
- Each problem must be solved in a different page, but items of the same problem can be in the same page.
- If you have any questions, send me a private message through the chat.
- You can only use your computer to look at the exam or to send me a message.
- When you are done, scan your solutions, make sure they are legible, and upload them to Canvas.
- When you are done uploading your solutions, send me a private message with the time. Then you can leave Zoom.
- Be prepared to, upon request (via private message), show me your surroundings!

1) Give the set of units [i.e., invertible elements] for the rings below. [These don't need to be justified, but if there are no justifications, I cannot give partial credit.]
(a) $[5$ points $] \mathbb{Z}$
(b) [5 points] $\mathbb{R}$
(c) $[5$ points $] \mathbb{F}_{13}$
(d) $[10$ points $] \mathbb{I}_{15}$ [same as $\left.\mathbb{Z} / 15 \mathbb{Z}\right]$.
2) [25 points] Prove that the prime field of $\mathbb{R}$ is $\mathbb{Q}$.
[Hint: This was a HW problem.]
3) [25 points] Prove that

$$
\mathbb{Z}[\sqrt[3]{2}] \stackrel{\text { def }}{=}\{a+b \sqrt[3]{2}+c \sqrt[3]{4}: a, b, c \in \mathbb{Z}\}
$$

is a domain.
[Hint: There is a hard and an easy way to do this. Part of this was done in class.]
4) [25 points] Prove, using only the axioms for commutative rings [listed on the last page], that if $R$ is a commutative ring, then for all $a \in R$ we have that $a \cdot 0=0$. You have to justify every step of your proof!
[Hints: This was done in class! Use Axiom 3 to write $0=0+0$. Be careful to use the associative [Axiom 2] and commutative [Axiom 1] when necessary!]

Commutative Ring Axioms: A [non-empty] set with two operations, + and $\cdot$, is a commutative ring if:

0 . For all $a, b \in R$ we have that $a+b \in R$ and $a \cdot b \in R$.

1. For all $a, b \in R$ we have that $a+b=b+a$.
2. For all $a, b, c \in R$ we have that $(a+b)+c=a+(b+c)$.
3. There exists $0 \in R$ such that for all $a \in R$ we have $a+0=a$.
4. For all $a \in R$ there exists $-a \in R$ such that $a+(-a)=0$.
5. For all $a, b \in R$ we have that $a \cdot b=b \cdot a$.
6. For all $a, b, c \in R$ we have that $(a \cdot b) \cdot c=a \cdot(b \cdot c)$
7. There is $1 \in R$ such that for all $a \in R$ we have that $1 \cdot a=a$
8. For all $a, b, c \in R$ we have that $a \cdot(b+c)=a \cdot b+a \cdot c$
