1) [25 points] Compute the remainder of 2^{5353} when divided by 11. [Show work, including computations!]

Solution. We have:

$$
\begin{aligned}
5353 & =11 \cdot 486+7 \\
486 & =11 \cdot 44+2 \\
44 & =11 \cdot 4+0 \\
4 & =11 \cdot 0+4 .
\end{aligned}
$$

So, $5353=7+2 \cdot 11+0 \cdot 11^{2}+4 \cdot 11^{3}$. Then, by Fermat's Theorem:

$$
2^{5353}=2^{7+2 \cdot 11+0 \cdot 11^{2}+4 \cdot 11^{3}} \equiv 2^{7+2+0+4}=2^{13}=2^{2+1 \cdot 11} \equiv 2^{2+1}=8 \quad(\bmod 11) .
$$

So, the remainder is 8 .

Alternative Solution. Since if $p \nmid a$, where p is prime, we have that $a^{p-1} \equiv 1(\bmod p)$, then with $p=11$ and $a=2$ we get that $2^{10} \equiv 1(\bmod 11)$. Then:

$$
2^{5353}=2^{535 \cdot 10+3}=\left(2^{10}\right)^{535} \cdot 2^{3} \equiv 1^{535} \cdot 8=8 \quad(\bmod 11)
$$

Hence, the remainder is 8 .
2) [25 points] Find all integers x such that

$$
\begin{aligned}
& 3 x \equiv 7 \quad(\bmod 10) \\
& 2 x \equiv 4 \quad(\bmod 14) .
\end{aligned}
$$

[If there is no such integer, explain how you could tell. You need to show work! Guessing solutions doesn't yield any credit.]

Solution. Start with the second equation. Since $\operatorname{gcd}(2,14)=2$, and $2 \mid 4$, we can divide the second equation [including the modulus] by 2 and get

$$
x \equiv 2 \quad(\bmod 7)
$$

So, $x=7 k+2$, for $k \in \mathbb{Z}$.
Substituting in the first, we get $3(7 k+2) \equiv 7(\bmod 10)$, so $21 k \equiv 1(\bmod 10)$, or $k \equiv 1$ $(\bmod 10)$.

Hence, $k=10 l+1$, and so $x=7 \cdot(10 l+1)+2=70 l+9$, for $l \in \mathbb{Z}$.

Alternative solution: Since $7 \cdot 3+(-2) \cdot 10=1[\operatorname{so} 7 \cdot 3 \equiv 1(\bmod 10)]$, we have that the first equation gives that $x \equiv 7 \cdot 7=49 \equiv 9(\bmod 10)$. So, $x=10 k+9$, for some $k \in \mathbb{Z}$. [One could also use $x=10 k-1$, since $9 \equiv-1(\bmod 10)$.]

Substituting in the second equation, we get: $2 \cdot(10 k+9) \equiv 4(\bmod 14)$, so $20 k \equiv-14$ $(\bmod 14)$, so $6 k \equiv 0(\bmod 14)$. [With $x=10 k-1$, we get $6 k \equiv 6(\bmod 14)$.]

Now, $\operatorname{gcd}(6,14)=2$ and $2 \mid 0[$ or $2 \mid 6]$, so we do have a solution. Dividing through out [including modulus] by 2 , we get $3 k \equiv 0(\bmod 7)[$ or $3 k \equiv 3(\bmod 7)]$. Now $5 \cdot 3+(-2) \cdot 7=1$ [i.e., $5 \cdot 3 \equiv 1(\bmod 7)$], so multiplying by 5 , we get $k \equiv 0(\bmod 7)[$ or $k \equiv 15 \equiv 1(\bmod 7)]$. So, $k=7 l$ for $l \in \mathbb{Z}[$ or $k=7 l+1]$.

Substituting back, we get $x=10 \cdot 7 l+9=70 l+9$, for $l \in \mathbb{Z}[$ or $x=10 \cdot(7 l+1)-1=70 l+9$ again].
3) [25 points] Prove that there are no integers x, y, z such that $x^{2}+y^{2}+z^{2}=999$.
[Note: This was a HW problem. You need to show work!]

Proof. Assume that are such integers x, y, and z. We then consider the equation modulo 8 :

$$
x^{2}+y^{2}+z^{2} \equiv 999 \equiv 7 \quad(\bmod 8) .
$$

But all squares modulo 8 are congruent to either 0,1 , or 4 [as seen in the book and class]. If none of x^{2}, y^{2}, and z^{2} is 4 modulo 8 , then the sum is at most 3 and so cannot be 7 modulo 8.

So, assume, without loss of generality, the $z^{2} \equiv 4(\bmod 8)$. Then, we have:

$$
x^{2}+y^{2} \equiv 3 \quad(\bmod 8) .
$$

Again, if neither x^{2} nor y^{2} is 4 modulo 8 , the sum is less than or equal to 2 , so, again, one of them must be 4 .

Assume then, without loss of generality, that $y^{2} \equiv 4(\bmod 8)$. Then,

$$
x^{2} \equiv-1 \equiv 7 \quad(\bmod 8),
$$

but that is impossible, as observed above.
4) [25 points] Prove that if $a, b \in \mathbb{Z}_{\geq 2}$ are such that both $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)$ are squares, then both a and b must also be squares.
[Hint: In your HW you've proved that if $c \in \mathbb{Z}_{\geq 2}$ and its factorization into primes is $c=p_{1}^{g_{1}} \cdots p_{k}^{g_{k}}$, then c is a square if and only if all g_{i} 's are even. You can use this here without proving it.]

Proof. Let $a=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}, b=p_{1}^{f_{1}} \cdots p_{k}^{f_{k}}$, with p_{i} 's distinct primes and $e_{i}, f_{i} \geq 0$.
Then, $\operatorname{gcd}(a, b)=p_{1}^{m_{1}} \cdots p_{k}^{m_{k}}$ and $\operatorname{lcm}(a, b)=p_{1}^{M_{1}} \cdots p_{k}^{M_{k}}$ where $m_{i}=\min \left\{e_{i}, f_{i}\right\}$ and $M_{i}=$ $\max \left\{e_{i}, f_{i}\right\}$. Since both $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)$ are squares, we have that m_{i} and M_{i} are both even.

Now, if $e_{i} \leq f_{i}$, then $e_{i}=m_{i}$ and $f_{i}=M_{i}$, and so both e_{i} and f_{i} are even.
If $e_{i}>f_{i}$, then $e_{i}=M_{i}$ and $f_{i}=m_{i}$, and so both e_{i} and f_{i} are, again, even.
Thus, we always have that both e_{i} and f_{i} are even [for all i]. Thus, both a and b are squares.

