
1) [25 points] Compute the remainder of 25353 when divided by 11. [Show work, including

computations!]

Solution. We have:

5353 = 11 · 486 + 7

486 = 11 · 44 + 2

44 = 11 · 4 + 0

4 = 11 · 0 + 4.

So, 5353 = 7 + 2 · 11 + 0 · 112 + 4 · 113. Then, by Fermat’s Theorem:

25353 = 27+2·11+0·112+4·113 ≡ 27+2+0+4 = 213 = 22+1·11 ≡ 22+1 = 8 (mod 11).

So, the remainder is 8.

Alternative Solution. Since if p - a, where p is prime, we have that ap−1 ≡ 1 (mod p), then

with p = 11 and a = 2 we get that 210 ≡ 1 (mod 11). Then:

25353 = 2535·10+3 =
(
210

)535 · 23 ≡ 1535 · 8 = 8 (mod 11).

Hence, the remainder is 8.
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2) [25 points] Find all integers x such that

3x ≡ 7 (mod 10)

2x ≡ 4 (mod 14).

[If there is no such integer, explain how you could tell. You need to show work! Guessing

solutions doesn’t yield any credit.]

Solution. Start with the second equation. Since gcd(2, 14) = 2, and 2 | 4, we can divide the

second equation [including the modulus] by 2 and get

x ≡ 2 (mod 7).

So, x = 7k + 2, for k ∈ Z.

Substituting in the first, we get 3(7k + 2) ≡ 7 (mod 10), so 21k ≡ 1 (mod 10), or k ≡ 1

(mod 10).

Hence, k = 10l + 1, and so x = 7 · (10l + 1) + 2 = 70l + 9, for l ∈ Z.

Alternative solution: Since 7 · 3 + (−2) · 10 = 1 [so 7 · 3 ≡ 1 (mod 10)], we have that the first

equation gives that x ≡ 7 · 7 = 49 ≡ 9 (mod 10). So, x = 10k + 9, for some k ∈ Z. [One

could also use x = 10k − 1, since 9 ≡ −1 (mod 10).]

Substituting in the second equation, we get: 2 · (10k + 9) ≡ 4 (mod 14), so 20k ≡ −14

(mod 14), so 6k ≡ 0 (mod 14). [With x = 10k − 1, we get 6k ≡ 6 (mod 14).]

Now, gcd(6, 14) = 2 and 2 | 0 [or 2 | 6], so we do have a solution. Dividing through out

[including modulus] by 2, we get 3k ≡ 0 (mod 7) [or 3k ≡ 3 (mod 7)]. Now 5·3+(−2)·7 = 1

[i.e., 5 · 3 ≡ 1 (mod 7)], so multiplying by 5, we get k ≡ 0 (mod 7) [or k ≡ 15 ≡ 1 (mod 7)].

So, k = 7l for l ∈ Z [or k = 7l + 1].

Substituting back, we get x = 10 ·7l+ 9 = 70l+ 9, for l ∈ Z [or x = 10 · (7l+ 1)−1 = 70l+ 9

again].
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3) [25 points] Prove that there are no integers x, y, z such that x2 + y2 + z2 = 999.

[Note: This was a HW problem. You need to show work! ]

Proof. Assume that are such integers x, y, and z. We then consider the equation modulo 8:

x2 + y2 + z2 ≡ 999 ≡ 7 (mod 8).

But all squares modulo 8 are congruent to either 0, 1, or 4 [as seen in the book and class]. If

none of x2, y2, and z2 is 4 modulo 8, then the sum is at most 3 and so cannot be 7 modulo

8.

So, assume, without loss of generality, the z2 ≡ 4 (mod 8). Then, we have:

x2 + y2 ≡ 3 (mod 8).

Again, if neither x2 nor y2 is 4 modulo 8, the sum is less than or equal to 2, so, again, one

of them must be 4.

Assume then, without loss of generality, that y2 ≡ 4 (mod 8). Then,

x2 ≡ −1 ≡ 7 (mod 8),

but that is impossible, as observed above.
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4) [25 points] Prove that if a, b ∈ Z≥2 are such that both gcd(a, b) and lcm(a, b) are squares,

then both a and b must also be squares.

[Hint: In your HW you’ve proved that if c ∈ Z≥2 and its factorization into primes is

c = pg11 · · · p
gk
k , then c is a square if and only if all gi’s are even. You can use this here

without proving it.]

Proof. Let a = pe11 · · · p
ek
k , b = pf11 · · · p

fk
k , with pi’s distinct primes and ei, fi ≥ 0.

Then, gcd(a, b) = pm1
1 · · · p

mk
k and lcm(a, b) = pM1

1 · · · p
Mk
k where mi = min{ei, fi} and Mi =

max{ei, fi}. Since both gcd(a, b) and lcm(a, b) are squares, we have that mi and Mi are both

even.

Now, if ei ≤ fi, then ei = mi and fi = Mi, and so both ei and fi are even.

If ei > fi, then ei = Mi and fi = mi, and so both ei and fi are, again, even.

Thus, we always have that both ei and fi are even [for all i]. Thus, both a and b are

squares.
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