1) [20 points] Use the *Extended Euclidean Algorithm* to write the GCD of 117 and 66 as a linear combination of themselves. *Show work!*

[Hint: You should get 3 for the GCD!]

Solution. We have:

$$117 = 66 \cdot 1 + 51$$

$$66 = 51 \cdot 1 + 15$$

$$51 = 15 \cdot 3 + 6$$

$$15 = 6 \cdot 2 + \boxed{3} \longleftarrow \text{GCD}$$

$$6 = 3 \cdot 2 + 0.$$

So,

$$3 = 15 + (-2) \cdot 6$$

= 15 + (-2) \cdot [51 + (-3) \cdot 15]
= 7 \cdot 15 + (-2) \cdot 51
= 7 \cdot [66 + (-1) \cdot 51] + (-2) \cdot 51
= 7 \cdot 66 + (-9) \cdot 51
= 7 \cdot 66 + (-9) \cdot [117 + (-1) \cdot 66]
= 16 \cdot 66 + (-9) \cdot 117.

r	-	-	-	٦

2) [20 points] Express 2020 in base 5, i.e., write

$$2020 = ? + ? \cdot 5 + ? \cdot 5^{2} + ? \cdot 5^{3} + \cdots$$

with the blanks in $\{0, 1, 2, 3, 4\}$. Show work!

[Note: Trial and error is not acceptable here! You have to use some algorithm that always works, like the one I showed you in class.]

Solution. We have:

$$2020 = 5 \cdot 404 + 0$$

$$404 = 5 \cdot 80 + 4$$

$$80 = 5 \cdot 16 + 0$$

$$16 = 5 \cdot 3 + 1$$

$$3 = 5 \cdot 0 + 3.$$

So,

$$2020 = 0 + 4 \cdot 5 + 0 \cdot 5^2 + 1 \cdot 5^3 + 3 \cdot 5^4.$$

г		L

3) [20 points] Prove that $\sqrt{6}$ is not a rational number, i.e., that $\sqrt{6}$ is not of the form a/b, with $a, b \in \mathbb{Z}_{>0}$.

[Hint: We've proved in class that $\sqrt{2}$ is not rational. This is *very* similar.]

Proof. Suppose $\sqrt{6} = a/b$, with $a, b \in \mathbb{Z}_{>0}$ and gcd(a, b) = 1. Then, $\sqrt{6}b = a$, and so $6b^2 = a^2$. Therefore, since $2 \mid 6b^2$, we have that $2 \mid a^2$. Since 2 is prime, by Euclid's Lemma we have that $2 \mid a$. So, $a = 2a_1$, and then $6b^2 = (2a_1)^2 = 4a_1^2$. Then, $3b^2 = 2a_1^2$. So, $2 \mid 3b^2$ and since 2 is prime and $2 \nmid 3$ by Euclid's Lemma, we have that $2 \mid b^2$, and hence $2 \mid b$ [by Euclid's Lemma again]. But then $2 \mid a$ and $2 \mid b$, which is a contradiction as gcd(a, b) = 1.

4) [20 points] Let $n \in \mathbb{Z}$ and suppose that $3 \nmid n$. Prove that gcd(n, n+3) = 1.

[Note: In the HW you've proved that for all $n \in \mathbb{Z}$, we have gcd(n, n + 1) = 1. This is similar.]

Proof. Let $d = \gcd(n, n+3)$. Then, $d \mid n$ and $d \mid (n+3)$, and hence $d \mid (n+3) - n = 3$, by the Basic Lemma. So either d = 1 or d = 3. If d = 3, then $d = 3 \mid n$, a contradiction, so d = 1.

5) [20 points] Let a, b, and n be integers. [You may assume they are non-zero, if you wish.] Prove that if $a \mid n, b \mid n$, and gcd(a, b) = 1, then $ab \mid n$.

[Hint: This was a HW problem.]

Proof. Let $n = aa_1$ and $n = bb_1$, with $a_1, b_1 \in \mathbb{Z}$, since $a, b \mid n$. Now, by Bezout's Theorem, we have 1 = sa + tb. Multiplying by n we have

$$n = san + tbn = sa(bb_1) + tb(aa_1) = ab(sb_1 + ta_1).$$

Since $sb_1 + ta_1 \in \mathbb{Z}$, as \mathbb{Z} is closed under addition and multiplication, we have that $ab \mid n$. \Box