1) [20 points] Use the Extended Euclidean Algorithm to write the GCD of 117 and 66 as a linear combination of themselves. Show work!
[Hint: You should get 3 for the GCD!]

Solution. We have:

$$
\begin{aligned}
117 & =66 \cdot 1+51 \\
66 & =51 \cdot 1+15 \\
51 & =15 \cdot 3+6 \\
15 & =6 \cdot 2+3 \longleftarrow \mathrm{GCD} \\
6 & =3 \cdot 2+0 .
\end{aligned}
$$

So,

$$
\begin{aligned}
3 & =15+(-2) \cdot 6 \\
& =15+(-2) \cdot[51+(-3) \cdot 15] \\
& =7 \cdot 15+(-2) \cdot 51 \\
& =7 \cdot[66+(-1) \cdot 51]+(-2) \cdot 51 \\
& =7 \cdot 66+(-9) \cdot 51 \\
& =7 \cdot 66+(-9) \cdot[117+(-1) \cdot 66] \\
& =16 \cdot 66+(-9) \cdot 117 .
\end{aligned}
$$

2) [20 points] Express 2020 in base 5, i.e., write

$$
2020=?+? \cdot 5+? \cdot 5^{2}+? \cdot 5^{3}+\cdots
$$

with the blanks in $\{0,1,2,3,4\}$. Show work!
[Note: Trial and error is not acceptable here! You have to use some algorithm that always works, like the one I showed you in class.]

Solution. We have:

$$
\begin{aligned}
2020 & =5 \cdot 404+0 \\
404 & =5 \cdot 80+4 \\
80 & =5 \cdot 16+0 \\
16 & =5 \cdot 3+1 \\
3 & =5 \cdot 0+3 .
\end{aligned}
$$

So,

$$
2020=0+4 \cdot 5+0 \cdot 5^{2}+1 \cdot 5^{3}+3 \cdot 5^{4}
$$

3) [20 points] Prove that $\sqrt{6}$ is not a rational number, i.e., that $\sqrt{6}$ is not of the form a / b, with $a, b \in \mathbb{Z}_{>0}$.
[Hint: We've proved in class that $\sqrt{2}$ is not rational. This is very similar.]

Proof. Suppose $\sqrt{6}=a / b$, with $a, b \in \mathbb{Z}_{>0}$ and $\operatorname{gcd}(a, b)=1$. Then, $\sqrt{6} b=a$, and so $6 b^{2}=a^{2}$. Therefore, since $2 \mid 6 b^{2}$, we have that $2 \mid a^{2}$. Since 2 is prime, by Euclid's Lemma we have that $2 \mid a$. So, $a=2 a_{1}$, and then $6 b^{2}=\left(2 a_{1}\right)^{2}=4 a_{1}^{2}$. Then, $3 b^{2}=2 a_{1}^{2}$. So, $2 \mid 3 b^{2}$ and since 2 is prime and $2 \nmid 3$ by Euclid's Lemma, we have that $2 \mid b^{2}$, and hence $2 \mid b$ [by Euclid's Lemma again]. But then $2 \mid a$ and $2 \mid b$, which is a contradiction as $\operatorname{gcd}(a, b)=1$.
4) $[20$ points $]$ Let $n \in \mathbb{Z}$ and suppose that $3 \nmid n$. Prove that $\operatorname{gcd}(n, n+3)=1$.
[Note: In the HW you've proved that for all $n \in \mathbb{Z}$, we have $\operatorname{gcd}(n, n+1)=1$. This is similar.]

Proof. Let $d=\operatorname{gcd}(n, n+3)$. Then, $d \mid n$ and $d \mid(n+3)$, and hence $d \mid(n+3)-n=3$, by the Basic Lemma. So either $d=1$ or $d=3$. If $d=3$, then $d=3 \mid n$, a contradiction, so $d=1$.
5) [20 points] Let a, b, and n be integers. [You may assume they are non-zero, if you wish.] Prove that if $a|n, b| n$, and $\operatorname{gcd}(a, b)=1$, then $a b \mid n$.
[Hint: This was a HW problem.]

Proof. Let $n=a a_{1}$ and $n=b b_{1}$, with $a_{1}, b_{1} \in \mathbb{Z}$, since $a, b \mid n$. Now, by Bezout's Theorem, we have $1=s a+t b$. Multiplying by n we have

$$
n=s a n+t b n=s a\left(b b_{1}\right)+t b\left(a a_{1}\right)=a b\left(s b_{1}+t a_{1}\right) .
$$

Since $s b_{1}+t a_{1} \in \mathbb{Z}$, as \mathbb{Z} is closed under addition and multiplication, we have that $a b \mid n$.

