FIELD THEORY

MATH 552

Contents

1. Algebraic Extensions 1
1.1. Finite and Algebraic Extensions 1
1.2. Algebraic Closure 5
1.3. Splitting Fields 7
1.4. Separable Extensions 8
1.5. Inseparable Extensions 10
1.6. Finite Fields 13
2. Galois Theory 14
2.1. Galois Extensions 14
2.2. Examples and Applications 17
2.3. Roots of Unity 20
2.4. Linear Independence of Characters 23
2.5. Norm and Trace 24
2.6. Cyclic Extensions 25
2.7. Solvable and Radical Extensions 26
Index 28

1. Algebraic Extensions

1.1. Finite and Algebraic Extensions.

Definition 1.1.1. Let 1_{F} be the multiplicative unity of the field F.
(1) If $\sum_{i=1}^{n} 1_{F} \neq 0$ for any positive integer n, we say that F has characteristic 0 .
(2) Otherwise, if p is the smallest positive integer such that $\sum_{i=1}^{p} 1_{F}=0$, then F has characteristic p. (In this case, p is necessarily prime.)
(3) We denote the characteristic of the field by $\operatorname{char}(F)$.
(4) The prime field of F is the smallest subfield of F. (Thus, if $\operatorname{char}(F)=p>0$, then the prime field of F is $\mathbb{F}_{p} \stackrel{\text { def }}{=} \mathbb{Z} / p \mathbb{Z}$ (the filed with p elements) and if $\operatorname{char}(F)=0$, then the prime field of F is \mathbb{Q}.)
(5) If F and K are fields with $F \subseteq K$, we say that K is an extension of F and we write $K / F . F$ is called the base field.
(6) The degree of K / F, denoted by $[K: F] \stackrel{\text { def }}{=} \operatorname{dim}_{F} K$, i.e., the dimension of K as a vector space over F. We say that K / F is a finite extension (resp., infinite extension) if the degree is finite (resp., infinite).
(7) α is algebraic over F if there exists a polynomial $f \in F[X]-\{0\}$ such that $f(\alpha)=0$.

Definition 1.1.2. If F is a field, then

$$
F(\alpha) \stackrel{\text { def }}{=}\left\{\frac{f(\alpha)}{g(\alpha)}: f, g \in F[X] \text { and } g(\alpha) \neq 0\right\}
$$

is the smallest extension of F containing α. (Hence α is algebraic over F if, and only if, $F[\alpha]=F(\alpha)$.)

In the same way,

$$
\begin{aligned}
F\left(\alpha_{1}, \ldots, \alpha_{n}\right) & \stackrel{\text { def }}{=}\left\{\frac{f\left(\alpha_{1}, \ldots, \alpha_{n}\right)}{g\left(\alpha_{1}, \ldots, \alpha_{n}\right)}: f, g \in F\left[X_{1}, \ldots, X_{n}\right] \text { and } g\left(\alpha_{1}, \ldots, \alpha_{n}\right) \neq 0\right\} \\
& =F\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)\left(\alpha_{n}\right)
\end{aligned}
$$

is the smallest extension of F containing $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$.

Definition 1.1.3. If K / F is a finite extension and $K=F[\alpha]$, then α is called a primitive element of K / F.

Proposition 1.1.4. For any $f \in F[X]-\{0\}$ there exists an extension K / F such that f has a root in K. (E.g., $K \stackrel{\text { def }}{=} F[X] /(g)$, where g is an irreducible factor of f.)

Theorem 1.1.5. If $p(X) \in F[X]$ is irreducible of degree $n, K \stackrel{\text { def }}{=} F[X] /(p(X))$ and θ is the class of X in K, then θ is a root of $p(X)$ in $K,[K: F]=n$ and $\left\{1, \theta, \theta^{2}, \ldots, \theta^{n-1}\right\}$ is an F-basis of K.

Remark 1.1.6. Observe that $F[\theta]$ (polynomials over F evaluated at θ), where θ is a root of an irreducible polynomial $p(X)$, is then a field. Observe that $1 / \theta$ can be obtained with the extended Euclidean algorithm: if $d(X)$ is the $\operatorname{gcd}(X, p(X))$ and $d(X)=a(X) \cdot X+b(X) \cdot p(X)$, the $1 / \theta=a(\theta)$.

Definition 1.1.7. If α is algebraic over F, then there is a unique monic irreducible over F that has α as a root, called the irreducible polynomial (or minimal polynomial) of α over F, and we shall denote it $\min _{\alpha, F}(X)$. [Note: $\left(\min _{\alpha, F}(X)\right)=$ ker ϕ, where $\phi: F[X] \rightarrow F[\alpha]$ is the evaluation map.]

Corollary 1.1.8. If α is algebraic over F, then $F(\alpha)=F[\alpha] \cong F[x] /\left(\min _{\alpha, F}\right)$, and $[F[\alpha]: F]=\operatorname{deg} \min _{\alpha, F}$.

Proposition 1.1.9. If K is a finite extension of F and α is algebraic over K, then α is algebraic over F and $\min _{\alpha, K}(X) \mid \min _{\alpha, F}(X)$.

Definition 1.1.10. Let $\phi: R \rightarrow S$ be a ring homomorphism. If $f(X)=a_{n} X^{n}+\cdots+$ $a_{1} X+a_{0}$, then $f^{\phi} \stackrel{\text { def }}{=} \phi\left(a_{n}\right) X^{n}+\cdots+\phi\left(a_{1}\right) X+\phi\left(a_{0}\right) \in S[X]$. [Note that $f \mapsto f^{\phi}$ is a ring homomorphism.]

Theorem 1.1.11. Let $\phi: F \rightarrow F^{\prime}$ be an isomorphism, and $f \in F[X]$ be an irreducible polynomial. If α is a root of f in some extension of F and α^{\prime} is a root of f^{ϕ} in some extension of F^{\prime}, then there exists an isomorphism $\Phi: F[\alpha] \rightarrow F^{\prime}\left[\alpha^{\prime}\right]$ such that $\Phi(\alpha)=\alpha^{\prime}$ and $\left.\Phi\right|_{F}=\phi$.

Definition 1.1.12. K / F is an algebraic extension if every $\alpha \in K$ is algebraic over F.

Proposition 1.1.13. If $[K: F]<\infty$, then K / F is algebraic.

Remark 1.1.14. The converse is false. E.g., $\overline{\mathbb{Q}} \stackrel{\text { def }}{=}\{\alpha \in \mathbb{C}: \alpha$ is algebraic over $\mathbb{Q}\}$ is an infinite algebraic extension of \mathbb{Q}.

Proposition 1.1.15. If L is a finite extension K and K is a finite extension of F, then

$$
[L: F]=[L: K] \cdot[K: F] .
$$

Moreover, if $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is an F-basis of K and $\left\{\beta_{1}, \ldots, \beta_{m}\right\}$ is a K-basis of L, then $\left\{\alpha_{i} \cdot \beta_{j}: i \in\{1, \ldots, n\}\right.$ and $\left.j \in\{1, \ldots, m\}\right\}$ is an F-basis of L.

Definition 1.1.16. $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ generates K / F if $K=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and K / F is finitely generated. (Not necessarily algebraic!)

Proposition 1.1.17. $[K: F]<\infty$ if, and only if, K is finitely generated over F by algebraic elements.

Corollary 1.1.18. Let K / F be an arbitrary extension, then

$$
E \stackrel{\text { def }}{=}\{\alpha \in K: \alpha \text { is a algebraic over } F\},
$$

is a subfield of K containing F.

Definition 1.1.19. If F and K are fields contained in the field \mathcal{F}, then the composite (or compositum) of F and K is the smallest subfield of \mathcal{F} containing F and K, and is denoted by $F K$.

Proposition 1.1.20. (1) In general, we have:
$F K=\left\{\frac{\alpha_{1} \beta_{1}+\cdots+\alpha_{m} \beta_{m}}{\gamma_{1} \delta_{1}+\cdots+\gamma_{n} \delta_{n}}: \alpha_{i}, \gamma_{i} \in F ; \beta_{j}, \delta_{j} \in K ; \gamma_{1} \delta_{1}+\cdots+\gamma_{n} \delta_{n} \neq 0\right\}$
(2) If K_{1} / F and K_{2} / F are finite extensions, with $K_{1}=F\left[\alpha_{1}, \ldots, \alpha_{m}\right]$ and $K_{2}=$ $F\left[\beta_{1}, \ldots, \beta_{n}\right]$, then $K_{1} K_{2}=F\left[\alpha_{1}, \ldots, \alpha_{m}, \beta_{1}, \ldots, \beta_{n}\right]$, and $\left[K_{1} K_{2}: F\right] \leq$ $\left[K_{1}: F\right] \cdot\left[K_{2}: F\right]$.

Definition 1.1.21. Let \mathcal{C} be a class of field extensions. We say that \mathcal{C} is distinguished if the following three conditions are satisfied:
(1) Let $F \subseteq K \subseteq L$. Then, L / F is in \mathcal{C} if, and only if, L / K and K / F are in \mathcal{C}.
(2) If K_{1} and K_{2} are extensions of F, both contained in \mathcal{F}, then if K_{1} / F is in \mathcal{C}, then $K_{1} K_{2} / K_{2}$ is also in \mathcal{C}.
(3) If K_{1} and K_{2} are extensions of F, both contained in \mathcal{F}, then if K_{1} / F and K_{2} / F are in \mathcal{C}, then $K_{1} K_{2} / F$ is also in \mathcal{C}. [Note that this follows from the previous two.]

Definition 1.1.22. Let \mathcal{C} be a class of field extensions. We say that \mathcal{C} is quasidistinguished if the following three conditions are satisfied:
(1') Let $F \subseteq K \subseteq L$. Then, if L / F is in \mathcal{C} then L / K in \mathcal{C}.
(2) Same as (2) of distinguished.
(3') Same as (3) of distinguished and $\left(K_{1} \cap K_{2}\right) / F$ also in \mathcal{C}.

Remark 1.1.23. The above definition is not standard.
Proposition 1.1.24. The classes of algebraic extensions and finite extensions are distinguished.

1.2. Algebraic Closure.

Definition 1.2.1. Let K and L be extensions of F.
(1) An embedding (i.e., an injective homomorphism) $\phi: K \rightarrow L$ is over F if $\left.\phi\right|_{F}=\mathrm{id}_{F}$.
(2) If E / K and $\psi: E \rightarrow L$ is also an embedding, we say that ψ is over ϕ, or is an extension of ϕ, if $\left.\psi\right|_{K}=\phi$.

Remark 1.2.2. Remember that if $\phi: F \rightarrow F^{\prime}$ is field homomorphism, then ϕ is either injective or $\phi \equiv 0$.

Definition 1.2.3. An algebraic closure of F is an algebraic extension K in which any polynomial in $F[X]$ splits [i.e., can be written as a product of linear factors] in $K[X]$. We say that F is algebraically closed if it is an algebraic closure of itself.

Lemma 1.2.4. Let K / F be algebraic. If $\phi: K \rightarrow K$ is an embedding over F, then ϕ is an automorphism.

Lemma 1.2.5. Let F and K be subfields of \mathcal{F} and $\phi: \mathcal{F} \rightarrow L$ be an embedding into some field L. Then $\phi(F K)=\phi(F) \phi(K)$.

Theorem 1.2.6. (1) For any field F, there exists an algebraic closure of F.
(2) An algebraic closure of F is algebraically closed.

Definition 1.2.7. If

$$
f(X)=\sum_{i=0}^{n} a_{i} X^{i} \in F[X]
$$

then the formal derivative of f is

$$
f^{\prime}(X)=\sum_{i=0}^{n} i a_{i} X^{i-1}
$$

Remark 1.2.8. The same formulas from calculus still hold (product rule, chain rule, etc.).

Lemma 1.2.9. Let $f \in F[X]$ and α a root of f. Then α is a multiple root if, and only if, $f^{\prime}(\alpha)=0$.

Lemma 1.2.10. Let $\phi: F \rightarrow F^{\prime}$ be an embedding, $c, a_{1}, \ldots, a_{k} \in F$, and $f \stackrel{\text { def }}{=}$ $c\left(X-a_{1}\right) \cdots\left(X-a_{k}\right) \in F[X]$. Then, $f^{\phi}(X)=\phi(c)\left(X-\phi\left(a_{1}\right)\right) \cdots\left(X-\phi\left(a_{k}\right)\right)$.

Theorem 1.2.11. Let $f \in F[X]$ be an irreducible polynomial. If f splits in K as $f=c\left(X-\alpha_{1}\right)^{n_{1}} \cdots\left(X-\alpha_{k}\right)^{n_{k}}$, with the α_{i} 's distinct, then $n_{1}=\cdots=n_{k}$. [So, f is a n_{1}-th power of a polynomial with simple roots.] Moreover, if K^{\prime} is any other field where f splits, and n is the common exponent above [e.g, $n=n_{1}$], we must have $f=c\left(X-\alpha_{1}^{\prime}\right)^{n} \cdots\left(X-\alpha_{k}^{\prime}\right)^{n}$ in $K^{\prime}[X]$. [I.e., the number of distinct roots k and the exponent n are the same.]

Corollary 1.2.12. If $f \in F[x]$ is irreducible and $\operatorname{char}(F)=0$ [or $\left.f^{\prime} \neq 0\right]$, then f has only simple roots [in any extension of F].

Theorem 1.2.13. (1) If $\phi: F \rightarrow K$ is an embedding of F, K is algebraically closed and α is algebraic over F, then the number of extensions of ϕ to $F[\alpha]$ is equal to the number of distinct roots of $\min _{\alpha, F}(X)$.
(2) If K / F is an algebraic extension, $\phi: F \rightarrow L$, with L algebraically closed, then there exists an extension $\psi: K \rightarrow L$ of ϕ. Moreover, if K is also algebraically closed and $L / \phi(F)$ is algebraic, then ψ is an isomorphism. [Hence the algebraic closure of a field is unique up to isomorphism, and we denote the algebraic closure of F by \bar{F}.]
(3) If K / F is an algebraic extension and \bar{K} is an algebraic closure of K, then it is also an algebraic closure of F. Conversely, if \bar{F} is an algebraic closure of F and K^{\prime} is the image of the embedding of K into \bar{F}, then \bar{F} is an algebraic closure of K^{\prime}.

1.3. Splitting Fields.

Definition 1.3.1. K is a splitting field of $f \in F[X]$ if $f(X)$ splits in K, but not in any proper subfield of K. In particular if f splits in an extension of F as $f=$ $c\left(X-\alpha_{1}\right) \cdots\left(X-\alpha_{n}\right)$, then $F\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ is a splitting field of f.

Theorem 1.3.2. If K_{1} / F and K_{2} / F are two splitting fields of $f \in F[X]$ [or of the same families of polynomials] in different algebraic closure [so that they are distinct], then there exists an isomorphism between K_{1} and K_{2} over F [induced by the isomorphism of the algebraic closures].

Remark 1.3.3. If \bar{F} is an algebraic closure of F and $\alpha_{1}, \ldots, \alpha_{n} \in \bar{F}$ are all the roots of $f(X)$, then the splitting field of F is $F\left[\alpha_{1}, \ldots, \alpha_{n}\right]$.

Definition 1.3.4. K is normal extension of F is it is algebraic over F and any embedding $\phi: K \rightarrow \bar{K}=\bar{F}$ over F is an automorphism of K.

Theorem 1.3.5. Let $F \subseteq K \subseteq \bar{F}$. The following are equivalent:
(1) K is normal.
(2) K is a splitting field of a family of polynomials.
(3) Every polynomials in $F[X]$ that has a root in K, splits in $K[X]$.

Theorem 1.3.6. The class of normal extensions is quasi-distinguished [but not distinguished]. Also, if K_{1} / F and K_{2} / F are normal, then so is $K_{1} \cap K_{2} / F$.

Proposition 1.3.7. If $[K: F]=2$, then K / F is normal.
Remark 1.3.8. (1) $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ and $\mathbb{Q}(\sqrt[4]{2}) / \mathbb{Q}(\sqrt{2})$ are normal extensions, but $\mathbb{Q}(\sqrt[4]{2}) / \mathbb{Q}$ is not normal.
(2) $\mathbb{Q}\left(\zeta_{3}, \sqrt[3]{2}\right) / \mathbb{Q}$, where $\zeta_{3}=\mathrm{e}^{2 \pi \mathrm{i} / 3}$, is normal, and $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{Q}\left(\zeta_{3}, \sqrt[3]{2}\right)$, but $\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q}$ is not normal.

1.4. Separable Extensions.

Lemma 1.4.1. Let $\sigma: F \rightarrow L$ and $\tau: F \rightarrow L^{\prime}$ be embeddings of F into algebraically closed fields, and let K / F be an algebraic extension. Then, the number [or cardinality] of extensions of σ to K is the same as the number of extensions of τ to K.

Definition 1.4.2. (1) Let K / F be a finite extension and \bar{F} be an algebraic closure of F. Then, the separable degree of K / F is

$$
[K: F]_{\mathrm{s}} \stackrel{\text { def }}{=} \text { number of embeddings } \phi: K \rightarrow \bar{F} \text { over } F
$$

(2) A polynomial $f \in F[X]$ is a separable polynomial if it has no multiple roots.
(3) Let α be algebraic over F. Then α is separable over F if $\min _{\alpha, F}(X)$ is separable.
(4) K / F is a separable extension if every element of K is separable over F.

Remark 1.4.3. If $\phi: F \rightarrow L$ is embedding of F and L is algebraic closed, then

$$
[K: F]_{\mathrm{s}}=\text { number of extensions } \psi: K \rightarrow L \text { of } \phi
$$

Theorem 1.4.4. If L / K and K / F are algebraic extensions, then

$$
[L: F]_{\mathrm{s}}=[L: K]_{\mathrm{s}} \cdot[K: F]_{\mathrm{s}}
$$

Moreover, if $[L: F]<\infty$, then

$$
[L: F]_{\mathrm{s}} \leq[L: F]
$$

and K / F is separable if, and only if, $[L: F]_{\mathrm{s}}=[L: F]$.

Theorem 1.4.5. If $K=F\left[\left\{\alpha_{i}: i \in I\right\}\right]$, where I is a set of indices and α_{i} is separable over F for all $i \in I$, then K / F is separable.

Theorem 1.4.6. The class of separable extensions is distinguished.

Proposition 1.4.7. Let K be a finite extension of F inside \bar{F}. Then the smallest extension of K which is normal over F is $L \stackrel{\text { def }}{=} \phi_{1}(K) \ldots \phi_{n}(K)$, where $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ are all the embeddings of K into \bar{F} over F. (The $\phi_{i}(K)$'s are called the conjugates of K.) Moreover, if K / F is separable, then L is also separable over F.

Definition 1.4.8. (1) The field L in the proposition above is called the normal closure of K / F.
(2) Let

$$
F^{\mathrm{s}} \stackrel{\text { def }}{=} \text { compositum of all separable extensions of } F \text {. }
$$

F^{s} is called the separable closure of all F.
(3) If $K=F[\alpha]$, then K is said to be a simple extension of F.

Theorem 1.4.9 (Primitive Element Theorem). If $[F: F]<\infty$, then K / F has a primitive element if, and only if, there are finitely many intermediate fields (i.e., fields L such that $F \subseteq L \subseteq K$). Moreover, if K / F is (finite and) separable, then K / F has a primitive element.

Lemma 1.4.10. If $f \in F[X]$ is irreducible, then f has distinct roots if, and only if, $f^{\prime}(X)$ is a non-zero polynomial.

Proposition 1.4.11. (1) α is separable over F if, and only if, $\left(\min _{\alpha, F}\right)^{\prime} \not \equiv 0$.
(2) If $\operatorname{char}(F)=0$, then any extension of F is separable.
(3) Let $\operatorname{char}(F)=p>0$. Then α is inseparable over F if, and only if, $\min _{\alpha, F} \in$ $F\left[X^{p}\right] .\left(A n d\right.$ thus, $\min _{\alpha, F}$ is a p-power in $\left.\bar{F}[X].\right)$

1.5. Inseparable Extensions.

Definition 1.5.1. An algebraic extension K / F is inseparable if it is not separable. (Note that if K / F is inseparable, then $\operatorname{char}(F)=p>0$.)

Proposition 1.5.2. If $F[\alpha] / F$ is finite and inseparable, then $\min _{\alpha, F}(X)=f\left(X^{p^{k}}\right)$, where $p=\operatorname{char}(F)$ [necessarily positive], for some positive integer k and separable and irreducible polynomial $f \in F[X]$. Moreover, $[F[\alpha]: F]_{\mathrm{s}}=\operatorname{deg} f,[F[\alpha]: F]=$ $p^{k} \cdot \operatorname{deg} f$, and $\alpha^{p^{k}}$ is separable over F.

Corollary 1.5.3. If K / F is finite, then $[K: F]_{\mathrm{s}} \mid[K: F]$. If $\operatorname{char}(F)=0$, then the quotient is 1 , and if $\operatorname{char}(F)=p>0$, then the quotient is a power of p.

Definition 1.5.4. Let K / F be a finite algebraic extension. The inseparable degree of K / F is

$$
[K: F]_{\mathrm{i}} \stackrel{\text { def }}{=} \frac{[K: F]}{[K: F]_{\mathrm{s}}} .
$$

Proposition 1.5.5. Let K / F be a finite algebraic extension. Then:
(1) K / F is separable if, and only if, $[K: F]_{i}=1$;
(2) if E is an intermediate field, then $[K: F]_{\mathrm{i}}=[K: E]_{\mathrm{i}} \cdot[E: F]_{\mathrm{i}}$.

Definition 1.5.6. (1) Let α be algebraic over F, with $\operatorname{char}(F)=p$. We say that α is purely inseparable over F if $\alpha^{p^{n}} \in F$ for some positive integer n. [Thus, $\left.\min _{\alpha, F} \mid X^{p^{n}}-\alpha^{p^{n}}=(X-\alpha)^{p^{n}}.\right]$
(2) An algebraic [maybe infinite] extension K / F is a purely inseparable extension if $[K: F]_{\mathrm{s}}=1$.

Proposition 1.5.7. An element α is purely inseparable if, and only if, $\min _{\alpha, F}(X)=$ $X^{p^{n}}-a$ for some positive integer n and $a \in F$. [Observe that $a=\alpha^{p^{n}}$.]

Proposition 1.5.8. Let K / F be an algebraic extension. The following are equivalent:
(1) K / F is purely inseparable [i.e., $\left.[K: F]_{\mathrm{s}}=1\right]$.
(2) All elements of K are purely inseparable over F.
(3) $K=F\left[\alpha_{i}: i \in I\right]$, for some set of indices I, with α_{i} purely inseparable over F.

Proposition 1.5.9. The class of purely inseparable extensions is distinguished.

Definition 1.5.10. (1) Let F be a field and G be a subgroup of $\operatorname{Aut}(F)$. Then:

$$
F^{G} \stackrel{\text { def }}{=}\{\alpha \in F: \phi(\alpha)=\alpha, \forall \phi \in G\},
$$

is the fixed field of G. (Note: it is a field.)
(2) The extension K / F is a Galois extension if it is normal and separable. In this case, the Galois group of K / F, denoted by $\operatorname{Gal}(K / F)$ is the group of automorphisms of K over F [i.e., automorphisms of K which fix F].

Remark 1.5.11. If K / F is Galois, then $\operatorname{Gal}(K / F)$ is equal to the set of embeddings of K into \bar{K}. Also, if K / F is finite, then K / F is Galois if, and only if, $\left|\operatorname{Aut}_{F}(K)\right|=$ $[K: F]$, and so $|\operatorname{Gal}(K / F)|=[K: F]$.

Remark 1.5.12. Note that for any field extension K / F we have a group of automorphisms over F, which we denote by $\operatorname{Aut}_{F}(K)$. But, usually, the notation $\operatorname{Gal}(K / F)$ is reserved for Galois extensions only. [A few authors do use $\operatorname{Gal}(K / F)$ for $\operatorname{Aut}_{F}(K)$, though.]

Proposition 1.5.13. Let K / F be an algebraic extension. Then

$$
K^{\prime} \stackrel{\text { def }}{=}\{x \in K: x \text { is separable over } F\}
$$

is a field [equal to the compositum of all separable extensions of F that are contained in K]. [So, it is clearly the maximal separable extension of F contained in K.] Then, K^{\prime} / F is separable and K / K^{\prime} is purely inseparable.

Corollary 1.5.14. (1) K / F is separable and purely inseparable, then $K=F$.
(2) If α is separable and purely inseparable over F, then $\alpha \in F$.

Corollary 1.5.15. If K / F is normal, then the maximal separable extension of F contained in K [i.e., the K^{\prime} in the proposition above] is normal over F. [Hence, K^{\prime} / F is Galois.]

Corollary 1.5.16. If F / E and K / E are finite, with $F, K \subseteq \mathcal{F}$, with F / E separable and K / E purely inseparable, then

$$
\begin{aligned}
& {[F K: K]=[F: E]=[F K: E]_{\mathrm{s}},} \\
& {[F K: F]=[K: E]=[F K: E]_{\mathrm{i}} .}
\end{aligned}
$$

Definition 1.5.17. Let F be a field [or a ring] of characteristic p, with p prime. The Frobenius morphism of F is the map

$$
\begin{aligned}
\sigma: F & \rightarrow F \\
x & \mapsto x^{p} .
\end{aligned}
$$

Corollary 1.5.18. Let K / F be a finite extension in characteristic $p>0$ and σ be the Frobenius.
(1) If $K^{\sigma} F=K$, then K / F is separable, where

$$
K^{\sigma}=\sigma(K)=\{\sigma(x): x \in K\} .
$$

(2) If K / F is separable, then $K^{\sigma^{n}} F=K$ for any positive integer n.

Remark 1.5.19. (1) If $K=F\left[\alpha_{1}, \ldots, \alpha_{m}\right]$, then $K^{\sigma^{n}} F=F\left[\alpha_{1}^{p^{n}}, \ldots, \alpha_{m}^{p^{n}}\right]$.
(2) Notice that if K / F is an algebraic extension, we can always have an intermediate field K^{\prime} such that K^{\prime} / F is separable and K / K^{\prime} is purely inseparable, but not always we can have a $K^{\prime \prime}$ such that $K^{\prime \prime} / F$ is purely inseparable and $K / K^{\prime \prime}$ is separable. [For example, take $F=\mathbb{F}_{p}(s, t)$, with $p>2$, and $K=F[\alpha]$, where α is a root of $X^{p}-\beta$ and β is a root of $X^{2}-s X+t$.]

The next proposition states that if K / F is normal, then there is such a $K^{\prime \prime}$.

Proposition 1.5.20. Let K / F be normal and $G \stackrel{\text { def }}{=} \operatorname{Aut}_{F}(K)\left[\right.$ where $\operatorname{Aut}_{F}(K)$ is the set of automorphisms of K over F] and K^{G} be the fixed field of G [as in Definition 1.5.10. Then K^{G} / F is purely inseparable and K / K^{G} is separable. [Hence, K / K^{G} is Galois.]

Moreover, if K^{\prime} is the maximal separable extension of F contained in K, then $K=K^{\prime} K^{G}$ and $K^{\prime} \cap K^{G}=F$.

Definition 1.5.21. A field F is a perfect field if either $\operatorname{char}(F)=0$ or $\operatorname{char}(F)=$ $p>0$ and the Frobenius $\sigma: F \rightarrow F$ is onto [or equivalently, every element of F has a p-th root]. [Note that σ is always injective, so σ is, in in this case, an automorphism of F.]

Proposition 1.5.22. Every algebraic extension of a perfect field F is both perfect and separable over F.

1.6. Finite Fields.

Theorem 1.6.1. If F is a field with q [finite] elements, then:
(1) $\operatorname{char}(F)=p>0$ and so $\mathbb{F}_{p} \subseteq F$;
(2) $q=p^{n}$ for some positive integer n;
(3) F is the splitting field of $X^{q}-X$ (over \mathbb{F}_{p});
(4) any other field with q elements is isomorphic to F, and in a fixed algebraic closure of \mathbb{F}_{p}, there exists only one field with q elements, usually denoted by $\mathbb{F}_{q} ;$
(5) there exists $\xi \in F$, such that $F^{\times}=\langle\xi\rangle$;
(6) for any positive integer r, there is a unique field with p^{r} elements in a fixed algebraic closure $\overline{\mathbb{F}}_{p}$ of \mathbb{F}_{p}, which is the unique extension of \mathbb{F}_{p} of degree r in $\overline{\mathbb{F}}_{p}$.

Proposition 1.6.2. Any algebraic extension of a finite field Galois [i.e., it is both normal and separable].

Proposition 1.6.3. The set of automorphisms of $\mathbb{F}_{p^{r}}$ is $\left\{\mathrm{id}, \sigma, \sigma^{2}, \ldots, \sigma^{r-1}\right\}$, where σ is the Frobenius map. [Note that these are all automorphisms, and they are automorphisms over $\left.\mathbb{F}_{p}.\right]$

Proposition 1.6.4. $\mathbb{F}_{p^{s}}$ is an extension of $\mathbb{F}_{p^{r}}$ if, and only if, $r \mid s$. In this case, the set of embeddings of $\mathbb{F}_{p^{s}}$ into $\overline{\mathbb{F}}_{p}$ over $\mathbb{F}_{p^{r}}$ [or equivalently, since normal, the set of automorphisms of $\mathbb{F}_{p^{s}}$ over $\left.\mathbb{F}_{p^{r}}\right]$ is $\left\{\mathrm{id}, \sigma^{r}, \sigma^{2 r}, \ldots, \sigma^{s-r}\right\}$, where σ is the Frobenius map. [In other words, $\operatorname{Gal}\left(\mathbb{F}_{p^{s}} / \mathbb{F}_{p^{r}}\right)=\left\langle\sigma^{r}\right\rangle$.]

Proposition 1.6.5. The algebraic closure $\overline{\mathbb{F}}_{p}$ is $\bigcup_{r>0} \mathbb{F}_{p^{r}}$. [Note that any finite union is contained in a single finite field.]

2. Galois Theory

2.1. Galois Extensions.

Proposition 2.1.1. Galois extensions form a quasi-distinguished class, and if K_{1} / F and K_{2} / F are Galois, then so is $K_{1} \cap K_{2} / F$.

Theorem 2.1.2. Let K / F be a Galois extension and $G \stackrel{\text { def }}{=} \operatorname{Gal}(K / F)$. Then
(1) $K^{G}=F$;
(2) if E is an intermediate field $(F \subseteq E \subseteq K$), then K / E is also Galois;
(3) the map $E \mapsto \operatorname{Gal}(K / E)$ is injective.

Corollary 2.1.3. Let K / F be a Galois extension and $G \stackrel{\text { def }}{=} \operatorname{Gal}(K / F)$. If E_{i} is an intermediate field and $H_{i} \stackrel{\text { def }}{=} \operatorname{Gal}\left(K / E_{i}\right)$, for $i=1,2$, then:
(1) $H_{1} \cap H_{2}=\operatorname{Gal}\left(K / E_{1} E_{2}\right)$;
(2) if $H=\left\langle H_{1}, H_{2}\right\rangle$ [i.e., H is the smallest subgroup of G containing H_{1} and H_{2}], then $K^{H}=E_{1} \cap E_{2}$.

Corollary 2.1.4. Let K / F be separable and finite, and L be the normal closure of K / F [i.e., the smallest normal extension of F containing $K]$. Then L / F is finite and Galois.

Lemma 2.1.5. Let K / F be a separable extension such that for all $\alpha \in K,[F[\alpha]$: $F] \leq n$, for some fixed n. Then $[K: F] \leq n$.

Theorem 2.1.6 (Artin). Let K be a field, G be a subgroup of $\operatorname{Aut}(K)$ with $|G|=$ $n<\infty$, and $F \stackrel{\text { def }}{=} K^{G}$. Then K / F is Galois and $G=\operatorname{Gal}(K / F)($ and $[K: F]=n)$.

Corollary 2.1.7. Let K / F be Galois and finite and $G \stackrel{\text { def }}{=} \operatorname{Gal}(K / F)$. Then, for any subgroup H of $G, H=\operatorname{Gal}\left(K / K^{H}\right)$.

Remark 2.1.8. The above corollary is not true if the extension is infinite! The map $H \mapsto K^{H}$ is not injective! For example, $\overline{\mathbb{F}}_{p} / \mathbb{F}_{p}$ is Galois, the cyclic group H generated by the Frobenius is not the Galois group, and yet $K^{H}=\mathbb{F}_{p}$.

Lemma 2.1.9. Let K_{1} and K_{2} be two extensions of F with $\phi: K_{1} \rightarrow K_{2}$ an isomorphism over F. Then $\operatorname{Aut}_{F}\left(K_{2}\right)=\phi \circ \operatorname{Aut}_{F}\left(K_{1}\right) \circ \phi^{-1}$.

Theorem 2.1.10. Let K / F be a Galois extension and $G \stackrel{\text { def }}{=} \operatorname{Gal}(K / F)$. If E is an intermediate extension, then E / F is normal [and thus Galois] if, and only if, $H \stackrel{\text { def }}{=} \operatorname{Gal}(K / E)$ is a normal subgroup of G. In this case, $\left.\phi \mapsto \phi\right|_{E}$ induces an isomorphism between G / H and $\operatorname{Gal}(E / F)$.

Definition 2.1.11. An extension K / F is an Abelian extension (resp., a cyclic extension) if it is Galois and $\operatorname{Gal}(K / F)$ is Abelian (resp., cyclic).

Corollary 2.1.12. If K / F is Abelian (resp., cyclic), then for any intermediate field $E, K / E$ and E / F are Abelian (resp., cyclic).

Theorem 2.1.13 (Fundamental Theorem of Galois Theory). Let K / F be finite and Galois, with $G \stackrel{\text { def }}{=} \operatorname{Gal}(K / F)$. The results above gives: the map

$$
\begin{aligned}
\{\text { subgroups of } G\} & \longrightarrow\{\text { intermediate fields of } K / F\} \\
H & \longmapsto K^{H}
\end{aligned}
$$

is a bijection with inverse

$$
\begin{aligned}
\{\text { intermediate fields of } K / F\} & \longrightarrow\{\text { subgroups of } G\} \\
E & \longmapsto \operatorname{Gal}(K / E) .
\end{aligned}
$$

Moreover an intermediate field E is Galois if, and only if, $H \stackrel{\text { def }}{=} \operatorname{Gal}(K / E)$ is normal in G, and $\operatorname{Gal}(E / F) \cong G / H$, induced by $\left.\phi \mapsto \phi\right|_{E}$.

Remark 2.1.14. Note that the maps $H \mapsto K^{H}$ and $E \mapsto \operatorname{Gal}(K / E)$ are inclusion reversing, i.e., $H_{1} \leq H_{2}$ implies $K^{H_{1}} \supseteq K^{H_{2}}$, and if $E_{1} \subseteq E_{2}$, then $\operatorname{Gal}\left(K / E_{1}\right) \geq$ $\operatorname{Gal}\left(K / E_{2}\right)$.

Theorem 2.1.15 (Natural Irrationalities). Let K / F be a Galois extension and L / F be an arbitrary extension, with $K, L \subseteq \mathcal{F}$ [so that we can consider the compositum $L K]$. Then $K L$ is Galois over L and K is Galois over $K \cap L$. Moreover, if $G \xlongequal{\text { def }}$ $\operatorname{Gal}(K / F)$ and $H \stackrel{\text { def }}{=} \operatorname{Gal}(K L / L)$, then for any $\phi \in H,\left.\phi\right|_{K} \in G$ and $\left.\phi \mapsto \phi\right|_{K}$ is an isomorphism between H and $\operatorname{Gal}(K / K \cap L)$.

Corollary 2.1.16. If K / F is finite and Galois and L / F is an arbitrary extension, then $[K L: L] \mid[K: F]$.

Remark 2.1.17. The above theorem does not hold for if K / F is not Galois. For example, $F \stackrel{\text { def }}{=} \mathbb{Q}, K \stackrel{\text { def }}{=} \mathbb{Q}(\sqrt[3]{2})$ and $L \stackrel{\text { def }}{=} \mathbb{Q}\left(\zeta_{3} \sqrt[3]{2}\right)$, where $\zeta_{3}=\mathrm{e}^{2 \pi \mathrm{i} / 3}$.

Theorem 2.1.18. Let K_{1} / F and K_{2} / F be Galois extensions with $K_{1}, K_{2} \in \mathcal{F}$. Then $K_{1} K_{2} / F$ is Galois. Moreover, if $G \stackrel{\text { def }}{=} \operatorname{Gal}\left(K_{1} K_{2} / F\right), G_{1} \stackrel{\text { def }}{=} \operatorname{Gal}\left(K_{1} / F\right), G_{2} \stackrel{\text { def }}{=}$ $\operatorname{Gal}\left(K_{2} / F\right)$ and

$$
\begin{aligned}
\Phi: G & \rightarrow G_{1} \times G_{2} \\
\phi & \mapsto\left(\left.\phi\right|_{K_{1}},\left.\phi\right|_{K_{2}}\right)
\end{aligned}
$$

then Φ is injective and if $K_{1} \cap K_{2}=F$, then Φ is an isomorphism.

Corollary 2.1.19. If K_{i} / F is Galois and $G_{i} \stackrel{\text { def }}{=} \operatorname{Gal}\left(K_{i} / F\right)$ for $i=1, \ldots, n$ and $K_{i+1} \cap\left(K_{1} \ldots K_{i}\right)=F$ for $i=1, \ldots,(n-1)$, then $\operatorname{Gal}\left(K_{1} \ldots K_{n} / F\right)=G_{1} \times \cdots \times G_{n}$.

Corollary 2.1.20. Let K / F be finite and Galois, with $G \stackrel{\text { def }}{=} \operatorname{Gal}(K / F)=G_{1} \times \cdots \times$ $G_{n}, H_{i} \stackrel{\text { def }}{=} G_{1} \times \cdots \times G_{i-1} \times 1 \times G_{i+1} \times \cdots \times G_{n}$ and $K_{i} \xlongequal{\text { def }} K^{H_{i}}$. Then K_{i} / F is Galois with $\operatorname{Gal}\left(K_{i} / F\right) \cong G_{i}, K_{i+1} \cap\left(K_{1} \ldots K_{i}\right)=F$ and $K=K_{1} \ldots K_{n}$.

Corollary 2.1.21. Abelian extensions are quasi-distinguished [see Definition 1.1.22]. Moreover, if K is an Abelian extension of F and E is an intermediate field, then E / F is also Abelian. [Hence, intersections of Abelian extensions are also Abelian.]

Remark 2.1.22. Observe that, as with Galois extensions [and Abelian extensions are Galois by definition], we do not always have that if K / E and E / F are Abelian, then K / F is Abelian. For example, $\mathbb{Q}(\sqrt[4]{2}) / \mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{2}) / \mathbb{Q}$ are Abelian (since they are degree two extensions), but $\mathbb{Q}(\sqrt[4]{2}) / \mathbb{Q}$ is not even Galois [since $X^{4}-2$ does not split in $\mathbb{Q}(\sqrt[4]{2})]$.

2.2. Examples and Applications.

Definition 2.2.1. The Galois group of a separable polynomial $f \in F[X]$ is the Galois group of the splitting field of f over F. We will denote it by G_{f} or $G_{f, F}$.

Proposition 2.2.2. (1) Let $f \in F[X]$ be a [not necessarily separable or irreducible] polynomial, K be its splitting field, and n be the number of distinct roots of $f[$ in $K]$. Then, $G \stackrel{\text { def }}{=} \operatorname{Aut}_{F}(K)$ is a subgroup of the symmetric group S_{n}, seen as permutations of the roots of f. [In particular, any $\sigma \in G$ is determined by its values on the roots of f, and hence, if $\sigma \in G$ fixes all roots of f, then $\left.\sigma=\mathrm{id}_{K}.\right]$
(2) If $f \in F[X]$ is irreducible [but not necessarily separable] and K, n, and G are as above, then G is a transitive subgroup of $\mathrm{S}_{n}[$ i.e., for all $i, j \in\{1, \ldots, n\}$, there is $\sigma \in G$ such that $\sigma(i)=j$.
(3) Let K / F be Galois [and hence separable] with $G \stackrel{\text { def }}{=} \operatorname{Gal}(K / F), \alpha \in K$,

$$
\mathcal{O} \stackrel{\text { def }}{=}\{\sigma(\alpha): \sigma \in G\}
$$

be the orbit of α by the action of G in K. Then, \mathcal{O} is finite, say, $\mathcal{O}=$ $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$, and

$$
\min _{\alpha, F}=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{k}\right)
$$

Note that $|\mathcal{O}||[K: F]=|G|$.
(4) Let K / F be finite and Galois with $G \stackrel{\text { def }}{=} \operatorname{Gal}(K / F)$, and let $\alpha \in K$. Then, $K=F[\alpha]$ if, and only if, the orbit of α by G has exactly $[K: F]$ elements.

Proposition 2.2.3 (Quadratic Extensions).
(1) If $\operatorname{char}(F) \neq 2$ and $[K: F]=2$, then there exists an $a \in F$ such that $K=F[\alpha]$, with $\min _{\alpha, F}=X^{2}-a$. Also, $\operatorname{Gal}(K / F) \cong \mathbb{Z} / 2 \mathbb{Z}$ and the nonidentity element is such that $\phi(\alpha)=-\alpha$.
(2) If $f \in F[X]$ is a quadratic separable polynomial, then the splitting field of F has degree two over $F, G_{f} \cong \mathbb{Z} / 2 \mathbb{Z}$ and the non-zero element of G_{f} is takes a root of f to the other root.

Definition 2.2.4. Let $f \in F[X]$, such that

$$
f(X)=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)
$$

Then the discriminant of f is defined as

$$
\Delta_{f}=\Delta \stackrel{\text { def }}{=} \prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

Proposition 2.2.5. For any $f \in F[X], \Delta_{f} \in F$. In particular if $f=a X^{2}+b X+c$, then $\Delta_{f}=b^{2}-4 a c$ and if $f=X^{3}+a X+b$, then $\Delta_{f}=-4 a^{3}-27 b^{2}$.

Proposition 2.2.6 (Cubic Extensions and Polynomials).
(1) If $[K: F]=3$, then for any $\alpha \in K-F$, we have $K=F[\alpha]$.
(2) If $\operatorname{char}(F) \neq 3$ and $f \in F[X]$ is irreducible of degree 3 , say $f(X)=X^{3}+$ $a X^{2}+b X+c$, then the splitting field of f is the same as the splitting field of the polynomial $\tilde{f}(X) \stackrel{\text { def }}{=} f(X-a / 3)=X^{3}+\tilde{a} X+\tilde{b}$. [Hence $G_{f}=G_{\tilde{f}}$.]
(3) If the splitting field of a separable $f \in F[X]$ is of degree 3 , then $G_{f} \cong \mathbb{Z} / 3 \mathbb{Z}$ and if $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are the [distinct] roots of f, then $G_{f}=\langle\phi\rangle$, where $\phi\left(\alpha_{1}\right)=\alpha_{2}$ and $\phi\left(\alpha_{2}\right)=\alpha_{3}$ and $\phi\left(\alpha_{3}\right)=\alpha_{1}$. Note that in this case, $G_{f} \cong \mathrm{~A}_{3}$, where A_{n} is the alternating subgroup of S_{n} [i.e., the subgroup of even permutations].
(4) If the splitting field of a separable $f \in F[X]$ is not of degree 3 , then $G_{f} \cong \mathrm{~S}_{3}$ [and hence G_{f} can permute the roots of f in all possible ways].
(5) Let $f=\prod_{i=1}^{3}\left(X-\alpha_{i}\right) \in F[X]$ and

$$
\delta \stackrel{\text { def }}{=}\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{2}-\alpha_{3}\right) .
$$

[Thus, $\delta^{2}=\Delta_{f}$.] If f is irreducible in $F[X], \Delta_{f} \neq 0$ [i.e., f is separable] and $\operatorname{char}(F) \neq 2$, then $G_{f} \cong \mathrm{~S}_{3}$ if, and only if, $\delta \notin F$ [or equivalently, Δ_{f} is not a square in F.] [Note that if $\delta \notin F$, then $F[\delta] / F$ is a degree two extension contained in the splitting field of f.]

Examples 2.2.7. From the above, we can deduce:
(1) If $f \stackrel{\text { def }}{=} X^{3}-X+1 \in \mathbb{Q}[X]$, then $\Delta_{f}=-23$, and hence $G_{f}=\mathrm{S}_{3}$.
(2) If $f \stackrel{\text { def }}{=} X^{3}-3 X+1 \in \mathbb{Q}[X]$, then $\Delta_{f}=81$, and hence $G_{f}=\mathbb{Z} / 3 \mathbb{Z}$.

Example 2.2.8. If $f=X^{4}-2 \in \mathbb{Q}[X]$, then $G_{f} \cong \mathrm{D}_{8}$, the dihedral group of 8 elements. More precisely, if $\phi \in \operatorname{Gal}(Q[\sqrt[4]{2}, \mathrm{i}] / \mathbb{Q}[\mathrm{i}])$ such that $\phi(\sqrt[4]{2})=\sqrt[4]{2} \mathrm{i}$ and $\psi \in \operatorname{Gal}(Q[\sqrt[4]{2}, \mathrm{i}] / \mathbb{Q}[\sqrt[4]{2}])$ such that $\psi(\mathrm{i})=-\mathrm{i}$ [i.e., ψ is the complex conjugation], then

$$
\begin{aligned}
G_{f} & =\left\langle\phi, \psi: \phi^{4}=\mathrm{id}, \psi^{2}=\mathrm{id}, \psi \circ \phi=\phi^{3} \circ \psi\right\rangle \\
& =\left\{\mathrm{id}, \phi, \phi^{2}, \phi^{3}, \psi, \phi \circ \psi, \phi^{2} \circ \psi, \phi^{3} \circ \psi\right\} .
\end{aligned}
$$

Proposition 2.2.9. Let E be a field, t_{1}, \ldots, t_{n} be algebraically independent variables over E, s_{1}, \ldots, s_{n} be their elementary symmetric functions, $F \stackrel{\text { def }}{=} E\left(s_{1}, \ldots, s_{n}\right)$ and $K \stackrel{\text { def }}{=} E\left(t_{1}, \ldots, t_{n}\right)$. Then $\min _{t_{i}, F}=\prod_{i=1}^{n}\left(X-t_{i}\right)$ and $\operatorname{Gal}(K / F) \cong \mathrm{S}_{n}$.

Theorem 2.2.10 (Fundamental Theorem of Algebra). \mathbb{C} is the algebraic closure of \mathbb{R}.

Lemma 2.2.11. If $G \subseteq S_{p}$, with p prime, and G contains a transposition and a p-cycle, then $G=\mathrm{S}_{p}$.

Proposition 2.2.12. If $f \in \mathbb{Q}[X]$ is irreducible, $\operatorname{deg} f=p$, with p prime, and if f has exactly two complex roots, then $G_{f} \cong S_{p}$.

Example 2.2.13. As an application of the proposition above, let $f \stackrel{\text { def }}{=} X^{5}-4 X+2 \in$ $\mathbb{Q}[X]$. Then $G_{f} \cong S_{5}$. In fact, one can use the above proposition to prove that for every prime p there is a polynomial $f_{p} \in \mathbb{Q}[X]$ such that $G_{f_{p}, \mathbb{Q}}=\mathrm{S}_{p}$. [One can get all S_{n}, in fact, but it is harder.]

Theorem 2.2.14. Let $f \in \mathbb{Z}[X]$ be a monic separable polynomial, p be a prime that does not divide the discriminant of f, and $\bar{f} \in \mathbb{Z} / p \mathbb{Z}[X]$ be the reduction modulo p of f [i.e., obtained by reducing the coefficients]. Then, there is a bijection between the roots of f and the roots of \bar{f}, denoted by $\alpha \mapsto \bar{\alpha}$, and an injection $i: G_{\bar{f}} \rightarrow G_{f}$, such that, if $\phi \in G_{\bar{f}}$ and $\bar{\alpha}_{i}$ and $\bar{\alpha}_{j}$ are roots of \bar{f}, with $\phi\left(\bar{\alpha}_{i}\right)=\bar{\alpha}_{j}$, then $i(\phi)\left(\alpha_{i}\right)=\alpha_{j}$.

In particular, if $\phi \in G_{\bar{f}}$, then G_{f} has an element [namely $i(\phi)$] that has the same cycle structure [seen as a permutation] as ϕ itself. [E.g., if ϕ as a permutation is a product of a two-cycle, a 4-cycle and a 7-cycle [all disjoint], then $i(\phi)$ is also a product of a two-cycle, a 4-cycle and a 7-cycle [all disjoint] in G_{f}.]

Example 2.2.15. As an application of the theorem above, one can prove that $f \stackrel{\text { def }}{=}$ $X^{5}-X-1 \in \mathbb{Z}[X]$ is such that $G_{f}=\mathrm{S}_{5}$, by reducing f modulo 5 and modulo 2 .

2.3. Roots of Unity.

Definition 2.3.1.

(1) A n-th root of unity in a field F is a root of $X^{n}-1$ in F. A root of unity [with no n specified] is a root of unit for some n.
(2) The set of all roots of unity form an Abelian group, denoted by $\boldsymbol{\mu}(F)$ or simply μ.
(3) The set of n-th roots of unity in F is a cyclic group denoted by $\boldsymbol{\mu}_{n}(F)$ or simply $\boldsymbol{\mu}_{n}$.
(4) If $\operatorname{char}(F) \nmid n$, then $\left|\boldsymbol{\mu}_{n}\right|=n$ and a generator of $\boldsymbol{\mu}_{n}$ is called a primitive n-th root of unity.

Proposition 2.3.2. (1) If $\operatorname{char}(F)=p>0, n=p^{r} m$, and $p \nmid m$, then $\boldsymbol{\mu}_{n}(F)=$ $\boldsymbol{\mu}_{m}(F)$ [and so $\left.\left|\boldsymbol{\mu}_{n}(F)\right|=m\right]$.
(2) If $\operatorname{gcd}(n, m)=1$, then $\boldsymbol{\mu}_{n} \times \boldsymbol{\mu}_{m} \cong \boldsymbol{\mu}_{n} \cdot \boldsymbol{\mu}_{m}=\boldsymbol{\mu}_{n m}$ and the isomorphism is given by $\left(\zeta, \zeta^{\prime}\right) \mapsto \zeta \zeta^{\prime}$. [In particular, if ζ_{n} and ζ_{m} are primitive n-th and m-th roots of unity, then $\zeta_{n} \zeta_{m}$ is a primitive nm-th root of unity.]

Proposition 2.3.3. Let F be a field such that $\operatorname{char}(F) \nmid n$, and ζ_{n} a primitive n-th root of unity. Then $F\left[\zeta_{n}\right] / F$ is Galois. If $\phi \in \operatorname{Gal}\left(F\left[\zeta_{n}\right] / F\right)$, then $\phi\left(\zeta_{n}\right)=\zeta_{n}^{i(\phi)}$, for some $i(\phi) \in(\mathbb{Z} / n \mathbb{Z})^{\times}$and this map $i: \operatorname{Gal}\left(F\left[\zeta_{n}\right] / F\right) \rightarrow(\mathbb{Z} / n \mathbb{Z})^{\times}$is injective. Thus, $\operatorname{Gal}\left(F\left[\zeta_{n}\right] / F\right)$ is Abelian.

Remark 2.3.4. Note that $\operatorname{Gal}\left(F\left[\zeta_{n}\right] / F\right)$ is not necessarily cyclic. For example, $\operatorname{Gal}\left(\mathbb{Q}\left[\zeta_{8}\right] / \mathbb{Q}\right) \cong$ $(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})$.

Definition 2.3.5. We say that K / F is a cyclotomic extension if there exists a root of unity ζ over F such that $K=F[\zeta]$. [Careful: in Lang, an extension is cyclotomic if there exists a root of unity ζ over F such that $K \subseteq F[\zeta]!]$

Definition 2.3.6. Let $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}$ denote the Euler phi-function, which is defined as

$$
\varphi(n) \stackrel{\text { def }}{=} \mid\{m \in \mathbb{Z}: 0<m<n \text { and } \operatorname{gcd}(m, n)=1\} \mid .
$$

Theorem 2.3.7. If ζ_{n} is a primitive n-th root of unity in \mathbb{Q}, then $\left[\mathbb{Q}\left[\zeta_{n}\right]: \mathbb{Q}\right]=\varphi(n)$ and the map $i: \operatorname{Gal}\left(F\left[\zeta_{n}\right] / F\right) \rightarrow(\mathbb{Z} / n \mathbb{Z})^{\times}$[as in Proposition 2.3.3] is an isomorphism.

Corollary 2.3.8. If ζ_{m} and ζ_{n} are a primitive m-th root of unity and primitive n-th root of unity, respectively, with $\operatorname{gcd}(m, n)=1$, then $\mathbb{Q}\left[\zeta_{m}\right] \cap \mathbb{Q}\left[\zeta_{n}\right]=\mathbb{Q}$,

Remark 2.3.9. If $m=\operatorname{lcm}\left(n_{1}, \ldots, n_{r}\right)$, and $\zeta_{n_{i}}$ is a primitive n_{i}-th root of unity for $i=1, \ldots, r$, then $\mathbb{Q}\left[\zeta_{n_{1}}\right] \cdots \mathbb{Q}\left[\zeta_{n_{r}}\right]=\mathbb{Q}\left[\zeta_{m}\right]$.

Definition 2.3.10. Let n be a positive integer not divisible by $\operatorname{char}(F)$. The polynomial

$$
\Phi_{n}(X) \stackrel{\text { def }}{=} \prod_{\substack{\zeta \text { prim. } n \text {-th } \\ \text { root of } 1 \text { in } F}}(X-\zeta)
$$

is called the n-th cyclotomic polynomial [over F].

Proposition 2.3.11.

(1) $\operatorname{deg} \Phi_{n}=\varphi(n)$.
(2) If ζ_{n} is a primitive n-th root of unity, then $\Phi_{n}(X)=\min _{\zeta_{n}, \mathbb{Q}}(X)$.
(3) If ζ_{n} is a primitive n-th root of unity, then

$$
\Phi_{n}(X)=\prod_{\phi \in \operatorname{Gal}\left(\mathbb{Q}\left[\zeta_{n}\right] / \mathbb{Q}\right)}\left(X-\phi\left(\zeta_{n}\right)\right)
$$

(4) $X^{n}-1=\prod_{d \mid n} \Phi_{d}(X)$.
(5) If $\operatorname{char}(F)=0$, then $\Phi_{n} \in \mathbb{Z}[X]$ for all n. If $\operatorname{char}(F)=p>0$, then $\Phi_{n} \in \mathbb{F}_{p}[X]$ for all n [not divisible by p].

Proposition 2.3.12.

(1) If p is prime, then $\Phi_{p}(X)=X^{p-1}+X^{p-2}+\cdots+X+1$.
(2) If p is prime, then $\Phi_{p^{r}}(X)=\Phi_{p}\left(X^{p^{r-1}}\right)$.
(3) If $n=p_{1}^{r_{1}} \cdots p_{s}^{r_{s}}$, with p_{i}^{\prime} 's distinct primes, then $\Phi_{n}(X)=\Phi_{p_{1} \cdots p_{s}}\left(X^{p_{1}^{r_{1}-1} \ldots p_{s}^{r_{s}-1}}\right)$.
(4) If $n>1$ is odd, then $\Phi_{2 n}(X)=\Phi_{n}(-X)$.
(5) If $p \nmid n$, with p an odd prime, then $\Phi_{p n}(X)=\frac{\Phi_{n}\left(X^{p}\right)}{\Phi_{n}(X)}$.
(6) If $p \mid n$, with p prime, then $\Phi_{p n}(X)=\Phi_{n}\left(X^{p}\right)$.

Remark 2.3.13. It is not true that for all n, the coefficients of $\Phi_{n}(X)$ are either 0,1 or -1 . The first n for which this fails is $105=3 \cdot 5 \cdot 7$.

Theorem 2.3.14 (Dirichlet's Theorem of Primes in Arithmetic Progression). If $\operatorname{gcd}(a, r)=1$, there are infinitely many primes in the arithmetic progression

$$
a, a+r, a+2 r, a+3 r, \ldots
$$

Theorem 2.3.15. Given a finite Abelian group G, there exists an extension F / \mathbb{Q} such that $\operatorname{Gal}(F / \mathbb{Q})=G$.

Theorem 2.3.16 (Kronecker-Weber). If F / \mathbb{Q} is finite and Abelian, then there exists a cyclotomic extension $\mathbb{Q}[\zeta] / \mathbb{Q}$ such that $F \subseteq \mathbb{Q}[\zeta]$.

2.4. Linear Independence of Characters.

Definition 2.4.1. Let G be a monoid [i.e., a "group" which might not have inverses] and F be a field. A character of G in F is a homomorphism $\chi: G \rightarrow F^{\times}$. The trivial character is the map constant equal to 1.

Let $f_{i}: G \rightarrow F$ for $i=1, \ldots, n$. We say that the f_{i} 's are linearly independent if

$$
\alpha_{1} f_{1}+\ldots \alpha_{n} f_{n}=0, \quad \alpha_{i} \in F
$$

then $\alpha_{i}=0$ for all i.

Remarks 2.4.2. (1) If K / F is a field extension and $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ are the embedding of K over F, then we can think of $\left.\phi\right|_{K^{\times}}$as characters of K^{\times}in K.
(2) If one says only a character in G (without mention of the field), one usually means a character from G in \mathbb{C}^{\times}or even in

$$
S^{1} \stackrel{\text { def }}{=}\{\zeta \in \mathbb{C}:|\alpha|=1\}
$$

Theorem 2.4.3 (Artin). If $\chi_{1}, \ldots, \chi_{n}$ distinct characters of G in F, then they are linearly independent.

Corollary 2.4.4. Let $\alpha_{1}, \ldots, \alpha_{n}$ be distinct elements of a field F^{\times}. If $a_{1}, \ldots, a_{n} \in F$ such that for all positive integer r we have

$$
a_{1} \alpha_{1}^{r}+\cdots+a_{n} \alpha_{n}^{r}=0
$$

then $a_{i}=0$ for all i.

Corollary 2.4.5. For any extension K / F, the set $\mathrm{Emb}_{K / F}$ is linearly independent over K.

2.5. Norm and Trace.

Definition 2.5.1. Let K / F be a finite extension, with $[K: F]_{\mathrm{s}}=r$ and $[K: F]_{\mathrm{i}}=p^{\mu}$. $\left[\operatorname{So}, \operatorname{char}(F)=p\right.$ or $[K: F]_{\mathrm{i}}=1$.] Let $\operatorname{Emb}_{K / F}=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ and $\alpha \in K$:
(1) The norm of α from K to F is

$$
\mathrm{N}_{K / F}(\alpha) \stackrel{\text { def }}{=} \prod_{i=1}^{n} \phi_{i}\left(\alpha^{p^{\mu}}\right)=\left(\prod_{i=1}^{n} \phi_{i}(\alpha)\right)^{[K: F]_{\mathrm{i}}}
$$

(2) The trace of α from K to F is

$$
\operatorname{Tr}_{K / F}(\alpha) \stackrel{\text { def }}{=}[K: F]_{\mathrm{i}} \cdot \sum_{i=1}^{n} \phi_{i}(\alpha)
$$

Remark 2.5.2. Note that if K / F is inseparable, then $\operatorname{Tr}_{K / F}(\alpha)=0$.

Lemma 2.5.3.
(1) Let K / F be a finite extension, and $\operatorname{Emb}_{K / F}=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ be the set of embeddings of K over F. If L / K is an algebraic extension and $\psi: L \rightarrow \bar{F}$ is an embedding over F, then

$$
\left\{\psi \circ \phi_{1}, \ldots, \psi \circ \phi_{n}\right\}=\operatorname{Emb}_{K / F}
$$

(2) Let $F \subseteq K \subseteq L$ be field extensions. Let

$$
\operatorname{Emb}_{K / F}=\left\{\phi_{1}, \ldots \phi_{r}\right\}
$$

and

$$
\operatorname{Emb}_{L / K}=\left\{\psi_{1}, \ldots \psi_{s}\right\}
$$

If $\tilde{\phi}_{i}: \bar{F} \rightarrow \bar{F}$ is an extension of ϕ_{i} to \bar{F} (which exists since \bar{F} / F is algebraic), then

$$
\operatorname{Emb}_{L / F}=\left\{\tilde{\phi}_{i} \circ \psi_{j}: i \in\{1, \ldots, r\} \text { and } j \in\{1, \ldots, s\}\right\}
$$

(3) Let K / F be a separable extension. If $\alpha \in K$ is such that $\phi(\alpha)=\alpha$ for all embeddings $\phi \in \mathrm{Emb}_{K / F}$, then $\alpha \in F$.

Theorem 2.5.4. Let L / F be a finite extension.
(1) For all $\alpha \in K, \mathrm{~N}_{K / F}(\alpha), \operatorname{Tr}_{K / F}(\alpha) \in F$.
(2) If $[K: F]=n$ and $\alpha \in F, \mathrm{~N}_{K / F}(\alpha)=\alpha^{n}$ and $\operatorname{Tr}_{K / F}(\alpha)=n \cdot \alpha$.
(3) $\left.\mathrm{N}_{K / F}\right|_{K^{\times}}: K^{\times} \rightarrow F^{\times}$is a [multiplicative] group homomorphism and $\operatorname{Tr}_{K / F}$: $K \rightarrow F$ is an [additive] group homomorphism.
(4) If K is an intermediate field, then

$$
\begin{aligned}
\mathrm{N}_{L / F} & =\mathrm{N}_{K / F} \circ \mathrm{~N}_{L / K}, \\
\operatorname{Tr}_{L / F} & =\mathrm{N}_{K / F} \circ \operatorname{Tr}_{L / K} .
\end{aligned}
$$

(5) If $L=F(\alpha)$, where $\min _{, \alpha, F}(X)=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0}$, then

$$
\mathrm{N}_{L / F}(\alpha)=(-1)^{n} a_{0}, \quad \operatorname{Tr}_{L / F}(\alpha)=-a_{n-1}
$$

Corollary 2.5.5. If $F \subseteq F(\alpha) \subseteq K$, with $[K: F]=n$, $\min _{, \alpha, F}(X)=X^{d}+$ $a_{d-1} X^{d-1}+\cdots+a_{1} X+a_{0}$, and $[L: F(\alpha)]=e$, then

$$
\mathrm{N}_{L / F}(\alpha)=(-1)^{n} a_{0}^{e}, \quad \operatorname{Tr}_{L / F}(\alpha)=\left(-a_{d-1}\right)^{e}
$$

Remark 2.5.6. $\operatorname{Tr}_{K / F}: K \rightarrow F$ is an F-linear map.

2.6. Cyclic Extensions.

Theorem 2.6.1 (Hilbert's Theorem 90 - multiplicative form). Let K / F be a cyclic extension of degree n and $\operatorname{Gal}(K / F)=\langle\sigma\rangle$. Then, $\beta \in K$ is such that $\mathrm{N}_{K / F}(\beta)=1$ if, and only if, there exists $\alpha \in K^{\times}$such that $\beta=\alpha / \sigma(\alpha)$.

Theorem 2.6.2. Let F be a field such that F contains a primitive n-th root of unity for some fixed n not divisible by $\operatorname{char}(F)$.
(1) If K / F is cyclic of degree n, then $K=F[\alpha]$ where α is a root of $X^{n}-a$, for some $a \in F$. [In particular, $\min _{\alpha, F}=X^{n}-a$.]
(2) Conversely, if $a \in F$ and α is a root of $X^{n}-a$, then $F[\alpha] / F$ is cyclic, its degree, say d, is a divisor of n, and $\alpha^{d} \in F$.

Remark 2.6.3. Note that, by linear independence of characters, if K / F is separable, then $\operatorname{Tr}_{K / F}$ is not constant equal to zero.

Theorem 2.6.4 (Hilbert's Theorem 90 - additive form). Let K / F be a cyclic extension of degree n and $\operatorname{Gal}(K / F)=\langle\sigma\rangle$. Then, $\beta \in K$ is such that $\operatorname{Tr}_{K / F}(\beta)=0$ if, and only if, there exists $\alpha \in K^{\times}$such that $\beta=\alpha-\sigma(\alpha)$.

Theorem 2.6.5 (Artin-Schreier). Let F be a field of characteristic $p>0$.
(1) If K / F is cyclic of degree p, then $K=F[\alpha]$ where α is a root of $X^{p}-X-a$, for some $a \in F$. [In particular, $\min _{\alpha, F}=X^{p}-X-a$.]
(2) Conversely, if $a \in F$ and $f \stackrel{\text { def }}{=} X^{p}-X-a$, then either f splits completely in F or is irreducible over F. In the latter case, if α is a root of f, then $F[\alpha] / F$ is cyclic of degree p.

2.7. Solvable and Radical Extensions.

Definition 2.7.1. A finite extension K / F is a solvable extension if it is separable and the normal closure L of K / F [which is then finite Galois over F] is such that $\operatorname{Gal}(L / F)$ is a solvable group.

Remark 2.7.2. Note that for a finite separable extension K / F to be solvable, it suffices that there exists some finite Galois extension of F containing K with its Galois group solvable.

Proposition 2.7.3. The class of solvable extensions is distinguished.

Definition 2.7.4. (1) A finite extension K / F is a repeated radical extension if there is a tower:

$$
F=F_{0} \subseteq F_{1} \subseteq F_{2} \subseteq \cdots \subseteq F_{r}=K
$$

such that $F_{i}=F_{i-1}\left[\alpha_{i}\right]$, where α_{i} is either a root of a polynomial $X^{n}-a$, for some $a \in F_{i-1}$ and with $\operatorname{char}(F) \nmid n$, or a root of $X^{p}-X-a$, for some $a \in F_{i-1}$, where $p=\operatorname{char}(F)$. [Note that α_{i} might then be a root of unity.]
(2) A finite extension K / F is a radical extension if there is $L \supseteq K$ such that L / F is repeated radical.

Remark 2.7.5. Note that, by definition, if K is the splitting field of a separable polynomial $f \in F[X]$, then the roots of f are given by radicals [i.e., f is solvable by radicals] if, and only if, K is radical.

Proposition 2.7.6. The class of radical extensions is distinguished.

Theorem 2.7.7. Let K / F be separable. Then, K / F is solvable if, and only if, it is radical.

Remark 2.7.8. This allows us to determine when a polynomial can be solved by radicals simply by looking at its Galois group!

Theorem 2.7.9. For $n=2,3,4$ [and $\operatorname{char}(F) \neq 2,3]$ there are formulas for solving [general] polynomial equations of degree n by means of radicals. For $n \geq 5$, there aren't.

Theorem 2.7.10. Suppose that $f \in \mathbb{Q}[X]$ is irreducible and splits completely in \mathbb{R}. If any root of f lies in a real repeated radical extension of \mathbb{Q}, then $\operatorname{deg} f=2^{r}$ for some non-negative integer r.

Remark 2.7.11. Note that the above theorem tells us that we cannot replace radical by repeated radical in trying to express all roots of a polynomials in terms of radicals. For example, the polynomial $f=X^{3}-4 X+2$ splits completely in \mathbb{R} and is solvable. So, we can write its roots in terms of radicals [since its radical], but we must have complex numbers to write them in terms of radicals [since is not repeated radical by the theorem above]. More precisely, if

$$
\alpha \stackrel{\text { def }}{=} \sqrt[3]{\frac{\sqrt{111}}{9}-1}, \quad \text { and } \quad \zeta_{3} \stackrel{\text { def }}{=} \frac{\sqrt{3}}{2} \mathrm{i}-\frac{1}{2}
$$

then the [all real] roots of f are

$$
\alpha+\frac{4}{3 \alpha}, \quad \alpha \zeta_{3}+\frac{4}{3 \alpha \zeta_{3}}, \quad \alpha \zeta_{3}^{2}+\frac{4}{3 \alpha \zeta_{3}^{2}} .
$$

[We cannot rewrite the above roots only using radicals of real numbers!]

Index

Abelian extension, 15
algebraic, 2
algebraic closure, 5
algebraic extension, 3
algebraically closed, 5
Artin-Schreier Theorem, 26
base field, 2
character, 23
characteristic 0,1
characteristic $p, 1$
composite, 4
compositum, 4
conjugates, 9
cyclic extension, 15
cyclotomic extension, 21
cyclotomic polynomial, 22
degree, 2
Dirichlet's Theorem of Primes in Arithmetic
Progression, 22
discriminant, 18
distinguished, 4
embedding, 5
Euler phi-function, 21
extension, 2, 5
finite extension, 2
finitely generated, 4
fixed field, 11
formal derivative, 6
Frobenius morphism, 12
Fundamental Theorem of Algebra, 19
Fundamental Theorem of Galois Theory, 15

Galois extension, 11
Galois group, 11

Galois group of a separable polynomial, 17 generates, 4

Hilbert's Theorem 90 - additive form, 26
Hilbert's Theorem 90 - multiplicative form, 25
infinite extension, 2
inseparable, 10
intermediate fields, 9
irreducible polynomial, 3

Kronecker-Weber Theorem, 23
linearly independent, 23
minimal polynomial, 3
monoid, 23

Natural Irrationalities, 16
norm, 24
normal closure, 9
normal extension, 7
orbit, 17
over, 5
perfect field, 13
prime field, 2
primitive n-th root of unity, 20
primitive element, 2
Primitive Element Theorem, 9
purely inseparable, 10
purely inseparable extension, 10
quasi-distinguished, 5
radical extension, 26
repeated radical extension, 26
root of unity, 20
separable, 8
separable closure, 9
separable degree, 8
separable extension, 8
separable polynomial, 8
simple extension, 9
solvable by radicals, 27
solvable extension, 26
splits, 5
splitting field, 7
trace, 24
transitive subgroup, 17
trivial character, 23

