Proposition. Let $F=\mathbb{F}_{p}\left(s^{p}, t^{p}\right)$ and $K=\mathbb{F}_{p}(s, t)$, where s and t are variables. Then $[K: F]=p^{2}$ and there are infinitely many intermediate extensions between K and F.

Proof. One can easily prove that $\left[\mathbb{F}_{p}\left(s, t^{p}\right): \mathbb{F}_{p}\left(s^{p}, t^{p}\right)\right]=p$ and $\left[\mathbb{F}_{p}(s, t): \mathbb{F}_{p}\left(s, t^{p}\right)\right]=p$, and so $[K: F]=p^{2}$.

Now, let $f \in K$ and define $E_{f}=F\left[s+f^{p} \cdot t\right]$. Then, clearly $F \subseteq E_{f}$, but $F \neq E_{f}$. So, one can see that $\left[E_{f}: F\right]=p$.

Suppose now that $E_{f}=E_{g}$, and call this extension simply E. Then, $s+f^{p} t, s+g^{p} t \in E$, and so the difference $\left(f^{p}-g^{p}\right) t \in E$. Since $\left(f^{p}-g^{p}\right) \in F \subseteq E$, we get that $t \in E$. Then, since $t, s+f^{p} t \in E$, we get that $s \in E$. Therefore, $s, t \in E$ and hence $E=K$.

But $[K: F]=p^{2}$ and $[E: F]=p$, a contradiction. Thus, $E_{f} \neq E_{g}$. Since there are infinitely many $f \in K$, we have infinitely many intermediate extensions.

