1) [10 points] Find the remainder of $493438+76584576 \cdot 47300272^{1000}$ when divided by 5 .

Solution. We have:

$$
\begin{aligned}
493438 & \equiv 3 \quad(\bmod 5) \\
76584576 & \equiv 1 \quad(\bmod 5) \\
47300272 & \equiv 2 \quad(\bmod 5)
\end{aligned}
$$

Also note that

$$
2^{2}=4 \equiv-1 \Longrightarrow 2^{1000} \equiv\left(2^{2}\right)^{500} \equiv(-1)^{500}=1 \quad(\bmod 5)
$$

Hence:

$$
493438+76584576 \cdot 47300272^{1000} \equiv 3+1 \cdot 2^{1000} \equiv 3+1 \cdot 1=4 \quad(\bmod 5)
$$

2) $[10$ points $]$ Let $n \in \mathbb{Z}$. Prove that $(n, n+1)=1$.
[Note: This was a HW problem.]

Proof. If $d \mid n$ and $d \mid(n+1)$, then $d \mid(n+1)-n=1$, by the Basic Lemma, and thus the only common divisors are ± 1, and the GCD is 1 .
[Alternatively, one can also do it using the "converse" of Bezout's Theorem for when we get 1 as a linear combination: we have that

$$
1=1 \cdot(n+1)+(-1) \cdot n
$$

So, we get $(n, n+1)=1$.]
3) [10 points] Find all $x \in \mathbb{Z}$ satisfying [simultaneously]:

$$
\begin{aligned}
& x \equiv 1 \quad(\bmod 7) \\
& x \equiv 4 \quad(\bmod 11)
\end{aligned}
$$

If there is no such x, simply justify why.

Solution. The first congruence gives $x=7 k+1$. Substituting in the second we get $7 k+1 \equiv 4$ $(\bmod 11)$, or $7 k \equiv 3(\bmod 11)$. Now $2 \cdot 11+(-3) \cdot 7=1$. So, $k \equiv-9 \equiv 2(\bmod 11)$, i.e., $k=2+11 l$ for $l \in \mathbb{Z}$.

Thus, $x=7 k+1=7(2+11 l)+1=15+77 l$, for $l \in \mathbb{Z}$.
4) [10 points] Prove that the only subring of \mathbb{F}_{p} [i.e., of $\left.\mathbb{Z} / p \mathbb{Z}\right]$ is itself.
[Note: It was a HW problem that the only subring of \mathbb{Z} was itself. This is similar.]

Proof. Let S be a subring of \mathbb{F}_{p}. Then, $1 \in S$ by definition of subring. Since S is closed under addition, we have that $2=1+1,3=2+1, \ldots, p=(p-1)+1=0$, are all in S. But these are all the elements of \mathbb{F}_{p}, so $S=\mathbb{F}_{p}$.

Since S was an arbitrary subring, \mathbb{F}_{p} itself is the only subring.
5) Below are the factorization of $f, g \in \mathbb{F}_{3}[x]$ into distinct irreducibles.

$$
\begin{aligned}
& f=x \cdot(x+1)^{3} \cdot\left(x^{2}+1\right) \cdot\left(x^{2}+x+2\right)^{4} \\
& g=2 \cdot x^{2} \cdot(x+2)^{2} \cdot\left(x^{2}+1\right)^{3} \cdot\left(x^{2}+x+2\right)
\end{aligned}
$$

(a) [4 points] Does $g \mid f$? [Justify!]

Solution. No, since the power of the irreducible x dividing g [namely, 2] is greater than the power of x dividing f [namely, 1].
(b) [3 points] Give the factorization of the $\operatorname{gcd}(f, g)$.

Solution.

$$
(f, g)=x \cdot\left(x^{2}+1\right) \cdot\left(x^{2}+x+2\right)
$$

(c) [3 points] Give the factorization of $\operatorname{lcm}(f, g)$.

Solution.

$$
[f, g]=x^{2} \cdot(x+1)^{3} \cdot(x+2)^{2} \cdot\left(x^{2}+1\right)^{3} \cdot\left(x^{2}+x+2\right)^{4} .
$$

6) Examples:
(a) [5 points] Give an example of an infinite commutative ring which is not a domain.

Solution. We have that $\mathbb{I}_{4}=\mathbb{Z} / 4 \mathbb{Z}$ is not a domain, so $\mathbb{I}_{4}[x]$ is not a domain, and, as any polynomial ring, it's infinite.
(b) [5 points] Give an example of a field properly containing \mathbb{R} [i.e., contains \mathbb{R} but it is not \mathbb{R} itself], but not containing \mathbb{C}. [Note that this excludes \mathbb{C} itself.]

Solution. $\mathbb{R}(x)$ works.
7) Determine if the polynomials below are irreducible or not in the corresponding polynomial ring. Justify each answer!
(a) $[3$ points $] f=x^{2018}-x+2018$ in $\mathbb{R}[x]$.

Solution. It's reducible, as it's degree is greater than 2 [as we are in $\mathbb{R}[x]]$.
(b) [3 points] $f=x+\pi$ in $\mathbb{C}[x]$.

Solution. Since it has degree 1, it is irreducible.
(c) $[3$ points $] f=x^{7}+110 x^{5}+x^{2}+97 x$ in $\mathbb{F}_{521}[x]$.

Solution. Reducible, as x is a proper factor.
(d) $[3$ points $] f=3 x^{7}+6 x^{6}-9 x^{4}+120 x^{3}-15 x+2$ in $\mathbb{Q}[x]$.

Solution. Irreducible, by the inverse Eisenstein's Criterion.
(e) [4 points] $f=64 x^{3}-3 x^{2}+32 x+30001$ in $\mathbb{Q}[x]$.

Solution. Reducing modulo 3, we get $\bar{f}=x^{3}+2 x+1$. Now $\bar{f}(0)=\bar{f}(1)=\bar{f}(2)=1$. Since $\operatorname{deg}(\bar{f})=3$ and it has no roots, \bar{f} is irreducible, and hence f is irreducible.
(f) [4 points] $f=x^{3}+2 x^{2}-2 x-1$ in $\mathbb{Q}[x]$.

Solution. By the rational root test, the only possible roots are ± 1. Since $f(1)=0, f$ is reducible.
8) Let $\sigma, \tau \in S_{9}$ be given by

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
7 & 1 & 5 & 4 & 3 & 9 & 2 & 8 & 6
\end{array}\right) \quad \text { and } \quad \tau=\left(\begin{array}{lllll}
1 & 3 & 8
\end{array}\right)\left(\begin{array}{lllll}
2 & 4 & 5 & 9
\end{array}\right)
$$

(a) [3 points] Write the complete factorization of σ into disjoint cycles.

Solution. $\sigma=(172)(35)(4)(69)(8)$.
(b) [3 points] Compute σ^{-1}. [Your answer can be in any form.]

Solution. $\sigma=(271)(53)(4)(96)(8)$, or

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
2 & 7 & 5 & 4 & 3 & 9 & 1 & 8 & 6
\end{array}\right)
$$

(c) [3 points] Compute $\tau \sigma$. [Your answer can be in any form.]

Solution. $\tau \sigma=(17458)(2396)$, or

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
7 & 3 & 9 & 5 & 8 & 2 & 4 & 1 & 6
\end{array}\right)
$$

(d) [3 points] Compute $\sigma \tau \sigma^{-1}$. [Your answer can be in any form.]

Solution. $\sigma \tau \sigma^{-1}=(758)(1436)$.
(e) [3 points] Write τ as a product of transpositions.

Solution. $\tau=(18)(13)(29)(25)(24)$.
(f) [2 points] Compute $\operatorname{sign}(\tau)$.

Solution. Using the number of transpositions: $\operatorname{sign}(\tau)=(-1)^{5}=-1$.
[Alternatively, noticing that the complete decomposition of τ is $\tau=\left(\begin{array}{lll}1 & 3 & 8\end{array}\right)\left(\begin{array}{ll}2 & 4 \\ 5\end{array}\right)(6)(7)$, the definition gives us $\operatorname{sign}(\tau)=(-1)^{9-4}=(-1)^{5}=-1$.]
(g) [3 points] Compute $|\tau|$ (the order of τ in $\left.S_{n}\right)$.

Solution. $|\tau|=\operatorname{lcm}(3,4)=12$.

