1) [10 points] Find the remainder of $493438 + 76584576 \cdot 47300272^{1000}$ when divided by 5.

Solution. We have:

$$493438 \equiv 3 \pmod{5},$$

 $76584576 \equiv 1 \pmod{5},$
 $47300272 \equiv 2 \pmod{5}.$

Also note that

$$2^2 = 4 \equiv -1 \Longrightarrow 2^{1000} \equiv (2^2)^{500} \equiv (-1)^{500} = 1 \pmod{5}.$$

Hence:

$$493438 + 76584576 \cdot 47300272^{1000} \equiv 3 + 1 \cdot 2^{1000} \equiv 3 + 1 \cdot 1 = 4 \pmod{5}.$$

2) [10 points] Let $n \in \mathbb{Z}$. Prove that (n, n + 1) = 1.

[Note: This was a HW problem.]

Proof. If $d \mid n$ and $d \mid (n + 1)$, then $d \mid (n + 1) - n = 1$, by the Basic Lemma, and thus the only common divisors are ± 1 , and the GCD is 1.

[Alternatively, one can also do it using the "converse" of Bezout's Theorem for when we get 1 as a linear combination: we have that

$$1 = 1 \cdot (n+1) + (-1) \cdot n.$$

So, we get (n, n+1) = 1.]

3) [10 points] Find all $x \in \mathbb{Z}$ satisfying [simultaneously]:

$$x \equiv 1 \pmod{7}, x \equiv 4 \pmod{11}.$$

If there is no such x, simply justify why.

Solution. The first congruence gives x = 7k+1. Substituting in the second we get $7k+1 \equiv 4 \pmod{11}$, or $7k \equiv 3 \pmod{11}$. Now $2 \cdot 11 + (-3) \cdot 7 = 1$. So, $k \equiv -9 \equiv 2 \pmod{11}$, i.e., k = 2 + 11l for $l \in \mathbb{Z}$.

Thus, x = 7k + 1 = 7(2 + 11l) + 1 = 15 + 77l, for $l \in \mathbb{Z}$.

4) [10 points] Prove that the only subring of \mathbb{F}_p [i.e., of $\mathbb{Z}/p\mathbb{Z}$] is itself.

[Note: It was a HW problem that the only subring of \mathbb{Z} was itself. This is similar.]

Proof. Let S be a subring of \mathbb{F}_p . Then, $1 \in S$ by definition of subring. Since S is closed under addition, we have that 2 = 1 + 1, 3 = 2 + 1, ..., p = (p - 1) + 1 = 0, are all in S. But these are all the elements of \mathbb{F}_p , so $S = \mathbb{F}_p$.

Since S was an arbitrary subring, \mathbb{F}_p itself is the only subring.

5) Below are the factorization of $f, g \in \mathbb{F}_3[x]$ into distinct irreducibles.

$$f = x \cdot (x+1)^3 \cdot (x^2+1) \cdot (x^2+x+2)^4$$

$$g = 2 \cdot x^2 \cdot (x+2)^2 \cdot (x^2+1)^3 \cdot (x^2+x+2)$$

(a) [4 points] Does $g \mid f$? [Justify!]

Solution. No, since the power of the irreducible x dividing g [namely, 2] is greater than the power of x dividing f [namely, 1]. \Box

(b) [3 points] Give the factorization of the gcd(f, g).

Solution.

$$(f,g) = x \cdot (x^2 + 1) \cdot (x^2 + x + 2).$$

(c) [3 points] Give the factorization of lcm(f, g).

Solution.

$$[f,g] = x^2 \cdot (x+1)^3 \cdot (x+2)^2 \cdot (x^2+1)^3 \cdot (x^2+x+2)^4.$$

3

6) Examples:

(a) [5 points] Give an example of an *infinite* commutative ring which is not a domain.

Solution. We have that $\mathbb{I}_4 = \mathbb{Z}/4\mathbb{Z}$ is not a domain, so $\mathbb{I}_4[x]$ is not a domain, and, as any polynomial ring, it's infinite.

(b) [5 points] Give an example of a field properly containing \mathbb{R} [i.e., contains \mathbb{R} but it is not \mathbb{R} itself], but not containing \mathbb{C} . [Note that this excludes \mathbb{C} itself.]

Solution. $\mathbb{R}(x)$ works.

7) Determine if the polynomials below are irreducible or not in the corresponding polynomial ring. *Justify each answer!*

(a) [3 points] $f = x^{2018} - x + 2018$ in $\mathbb{R}[x]$.

Solution. It's reducible, as it's degree is greater than 2 [as we are in $\mathbb{R}[x]$].

(b) [3 points]
$$f = x + \pi$$
 in $\mathbb{C}[x]$.

Solution. Since it has degree 1, it is irreducible.

(c) [3 points] $f = x^7 + 110x^5 + x^2 + 97x$ in $\mathbb{F}_{521}[x]$.

Solution. Reducible, as x is a proper factor.

(d) [3 points] $f = 3x^7 + 6x^6 - 9x^4 + 120x^3 - 15x + 2$ in $\mathbb{Q}[x]$.

Solution. Irreducible, by the inverse Eisenstein's Criterion.

(e) [4 points] $f = 64x^3 - 3x^2 + 32x + 30001$ in $\mathbb{Q}[x]$.

Solution. Reducing modulo 3, we get $\bar{f} = x^3 + 2x + 1$. Now $\bar{f}(0) = \bar{f}(1) = \bar{f}(2) = 1$. Since deg $(\bar{f}) = 3$ and it has no roots, \bar{f} is irreducible, and hence f is irreducible. \Box

(f) [4 points] $f = x^3 + 2x^2 - 2x - 1$ in $\mathbb{Q}[x]$.

Solution. By the rational root test, the only possible roots are ± 1 . Since f(1) = 0, f is reducible.

8) Let $\sigma, \tau \in S_9$ be given by

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 1 & 5 & 4 & 3 & 9 & 2 & 8 & 6 \end{pmatrix} \text{ and } \tau = (1\ 3\ 8)(2\ 4\ 5\ 9).$$

(a) [3 points] Write the *complete* factorization of σ into disjoint cycles.

Solution. $\sigma = (172)(35)(4)(69)(8)$.

(b) [3 points] Compute σ^{-1} . [Your answer can be in any form.]

Solution. $\sigma = (271)(53)(4)(96)(8)$, or

$\sigma =$	(1)	2	3	4	5	6	7	8	9
	2	7	5	4	3	9	1	8	6)

(c) [3 points] Compute $\tau\sigma$. [Your answer can be in any form.]

Solution. $\tau \sigma = (17458)(2396)$, or

$\sigma =$	(1)	2	3	4	5	6	7	8	9)
	$\left(7\right)$	3	9	5	8	2	4	1	6)

(d) [3 points] Compute $\sigma \tau \sigma^{-1}$. [Your answer can be in any form.]

Solution. $\sigma \tau \sigma^{-1} = (758)(1436).$

(e) [3 points] Write τ as a product of transpositions.

Solution. $\tau = (18)(13)(29)(25)(24)$.

(f) [2 points] Compute $\operatorname{sign}(\tau)$.

Solution. Using the number of transpositions: $\operatorname{sign}(\tau) = (-1)^5 = -1$. [Alternatively, noticing that the complete decomposition of τ is $\tau = (1\ 3\ 8)(2\ 4\ 5\ 9)(6)(7)$, the definition gives us $\operatorname{sign}(\tau) = (-1)^{9-4} = (-1)^5 = -1$.]

(g) [3 points] Compute $|\tau|$ (the order of τ in S_n).

Solution. $|\tau| = \text{lcm}(3, 4) = 12.$