1) [25 points] Let $f=x^{5}+x^{4}+x^{2}+2 x+1$ and $g=x^{4}+2 x$ in $\mathbb{F}_{3}[x]$. Find $\operatorname{gcd}(f, g)$ and express is as a linear combination of f and g.

Solution. We have:

$$
\begin{aligned}
f & =g \cdot(x+1)+\left(2 x^{2}+1\right), \\
g & =\left(2 x^{2}+1\right) \cdot\left(2 x^{2}+2\right)+(2 x+1), \\
\left(2 x^{2}+1\right) & =(2 x+1) \cdot(x+1)+0 .
\end{aligned}
$$

So, the GCD is the "monic version" of $2 x+1$, i.e., $2(2 x+1)=x+2$.
Now:

$$
\begin{aligned}
2 x+1 & =g-\left(2 x^{2}+1\right) \cdot\left(2 x^{2}+2\right) \\
& =g-[f-g \cdot(x+1)]\left(2 x^{2}+2\right) \\
& =-\left(2 x^{2}+2\right) \cdot f+\left(1+(x+1)\left(2 x^{2}+2\right)\right) \cdot g .
\end{aligned}
$$

Hence:

$$
\begin{aligned}
x+2 & =2 \cdot(2 x+1) \\
& =2\left[-\left(2 x^{2}+2\right) \cdot f+\left(1+(x+1)\left(2 x^{2}+2\right)\right) \cdot g\right] \\
& =-2 \cdot\left(2 x^{2}+2\right) \cdot f+2 \cdot\left(1+(x+1)\left(2 x^{2}+2\right)\right) \cdot g .
\end{aligned}
$$

2) [25 points] Let R be a domain. Prove that $f \in R[x]$ is a unit [of $R[x]]$ if and only if f is a unit of R [i.e., f is a constant polynomial and this constant is a unit of the ring R].
[Note: This was a HW problem.]
Proof. If $f=a \in U(R)$, then there is $b \in R$ such that $a b=1$. Since $a, b \in R[x]$ and 1 of R is the one of $R[x]$, we have that a is a unit of $R[x]$.
Conversely, if $f \in U(R[x])$, then there is $g \in R[x]$ such that $f \cdot g=1$. Then, since R is a domain, $\operatorname{deg}(f)+\operatorname{deg}(g)=\operatorname{deg}(f \cdot g)=\operatorname{deg}(1)=0$. Clearly neither f nor g is zero, as otherwise $f \cdot g=0 \neq 1$. So, we have $\operatorname{deg}(f), \operatorname{deg}(g) \geq 0$ and since they add up to 0 , both have to be 0 , i.e., both are in R. Since they multiply to 1 , the are in $U(R)$.
3) [25 points] Prove that if R is a domain, then $R[x]$ is also a domain. [You can assume that $R[x]$ is already a commutative ring, as polynomial rings always are (under the assumption R is commutative).]
[Note: This was done in class.]
Proof. Suppose that $f \neq 0$ is a zero divisor. Then, there is $g \in R[x]$, with $g \neq 0$, such that $f \cdot g=0$. So, as $f, g \neq 0$, we have $\operatorname{deg}(f), \operatorname{deg}(g) \geq 0$.
But, since R is a domain, we have $\operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g)$, and thus $-\infty=\operatorname{deg}(0)=$ $\operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g) \geq 0$, a contradiction.
4) [25 points] Let F be a field and $f, g \in F[x]$ such that $f \cdot g=a \cdot x^{n}$, for some $a \in F, a \neq 0$, and $n \in \mathbb{Z}_{>0}$. Prove that $f=b \cdot x^{r}, g=c \cdot x^{s}$ such that $b c=a$ and $r+s=n$.
[Hint: Section 3.6.]
Proof. Note that $f \cdot g=a \cdot x^{n}$ is the factorization of $f \cdot g$ into irreducibles [since x is irreducible].
So, since $f \mid f \cdot g=a x^{n}$, by the proposition from class, $f=b \cdot x^{r}$, for some $r \in\{0,1, \ldots, n\}$ and $b \neq 0$. Similarly, $g=c \cdot x^{s}$ for some $s \in\{0,1, \ldots, n\}$ and $c \neq 0$.
Now, since F is a field [and hence a domain], we have that $n=\operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g)=$ $r+s$. Also, since

$$
a \cdot x^{n}=\left(b \cdot x^{r}\right) \cdot\left(c x^{s}\right)=(b \cdot c) \cdot x^{r+s}=(b \cdot c) \cdot x^{n}
$$

we have $a=b \cdot c$.

