
1) [20 points] If u is a unit in a commutative ring, prove that its inverse is unique: if ua = 1

and ub = 1, then a = b. Justify every step! (Don’t skip steps!) [The axioms are listed in the

last page.]

[Note: This was a HW problem.]

Proof. We have:

ua = 1 =⇒ (ua)b = 1 · b [multiply by b]

=⇒ u(ab) = b [axioms 6 and 7]

=⇒ u(ba) = b [axiom 5]

=⇒ (ub)a = b [axiom 6]

=⇒ 1 · a = b [by hypothesis]

=⇒ a = b [axiom 7].

2) Let R be a commutative ring and U(R) be the set of units of a ring, i.e.,

U(R) = {a ∈ R : ∃b ∈ R such that ab = 1}.

[We denote this b, such that ab = 1, by a−1.]

[Hint: To show x ∈ U(R) we need to find y ∈ R such that xy = 1.]

(a) [15 points] Show that if x ∈ U(R), then x−1 ∈ U(R).

Proof. We have that x · x−1 = 1, so, since R is commutative, we have that x−1 · x = 1

[and x ∈ R]. Hence, by definition, we have that x−1 ∈ U(R).

(b) [15 points] Show that if x, y ∈ U(R), then xy ∈ U(R).

Proof. Since x, y ∈ U(R), there x−1, y−1 ∈ R such that xx−1 = 1, yy−1 = 1. Also,

since R is a ring x−1 · y−1 ∈ R. Then,

(xy) · (x−1y−1) = (xx−1)(yy−1) = 1 · 1 = 1.

So, xy ∈ U(R).
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3) [20 points] Let F be a field and suppose that F3 is a subfield of F . Prove that the prime

field of F is F3. [I proved this in class (in more generality), but you can’t use it here, of

course. It’s a very simple proof though!]

Proof. Let E be the prime field of F . So, by its minimality, we have that E ⊆ F3.

On the other hand, since E is a subfield, we have that 1F ∈ E. Since F3 is a subfield of F ,

we have that 1F = 1F3 = [1], and hence [1] ∈ E.

Now, since E is a field, it’s closed under addition, and hence [1] + [1] = [2] ∈ E and

[2] + [1] = [3] = [0] ∈ E. So, F3 = {[0], [1], [2]} ⊆ E.

Therefore, E = F3.
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4) Let R be a ring with F2 = {[0], [1]} [also denoted I2 or Z/2Z] as a subring, and having

exactly four elements, say R = {[0], [1], a, b}. [So, no two among [0], [1], a, and b are equal!

Hence, a 6= b, a 6= [1], b 6= [0], etc.]

(a) [15 points] Prove that since R contains F2, we have that 2x = 0 [or x + x = 0] for all

x ∈ R. [Hint: Use the ring axioms [and the fact that F2 is a subring, of course]. The

axioms are given in the last page.]

Proof. First observe that since F2 is a subring of R, we have 1R = 1F2 = [1], and

0R = 0F2 = [0].

We have:

2x = x + x

= x · (1R + 1R)

= x · ([1] + [1])

= x · [0]

= x · 0R

= 0R.

(b) [15 points] Prove that a + [1] = b. [Hint: Prove that a + [1] 6= [0], a + [1] 6= [1], and

a + [1] 6= a.]

Proof. Since R is a ring, it’s closed under addition. Then, a + [1] ∈ R. So, we have

that a + [1] is either [0], [1], a or b.

If a + [1] = [0], then, adding [1] we get a = [1], a contradiction.

If a + [1] = [1], then, adding [1] we get a = [0], a contradiction.

If a + [1] = a, then a + [1] = a + [0], and by the additive cancellation law [i.e., adding

−a to both sides], we have [1] = [0], a contradiction.

So, the only possibility is that a + [1] = b.
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Commutative Ring Axioms: A [non-empty] set with two operations, + and ·, is a com-

mutative ring if:

0. For all a, b ∈ R we have that a + b ∈ R and a · b ∈ R.

1. For all a, b ∈ R we have that a + b = b + a.

2. For all a, b, c ∈ R we have that (a + b) + c = a + (b + c).

3. There exists 0 ∈ R such that for all a ∈ R we have a + 0 = a.

4. For all a ∈ R there exists −a ∈ R such that a + (−a) = 0.

5. For all a, b ∈ R we have that a · b = b · a.

6. For all a, b, c ∈ R we have that (a · b) · c = a · (b · c)

7. There is 1 ∈ R such that for all a ∈ R we have that 1 · a = a

8. For all a, b, c ∈ R we have that a · (b + c) = a · b + a · c
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