1) [20 points] If u is a unit in a *commutative* ring, prove that its inverse is unique: if ua = 1 and ub = 1, then a = b. Justify every step! (Don't skip steps!) [The axioms are listed in the last page.]

[Note: This was a HW problem.]

Proof. We have:

$$ua = 1 \Longrightarrow (ua)b = 1 \cdot b \qquad [multiply by b]$$

$$\implies u(ab) = b \qquad [axioms 6 and 7]$$

$$\implies u(ba) = b \qquad [axiom 5]$$

$$\implies (ub)a = b \qquad [axiom 6]$$

$$\implies 1 \cdot a = b \qquad [by hypothesis]$$

$$\implies a = b \qquad [axiom 7].$$

2) Let R be a commutative ring and U(R) be the set of units of a ring, i.e.,

$$U(R) = \{ a \in R : \exists b \in R \text{ such that } ab = 1 \}.$$

[We denote this b, such that ab = 1, by a^{-1} .] [**Hint:** To show $x \in U(R)$ we need to find $y \in R$ such that xy = 1.]

(a) [15 points] Show that if $x \in U(R)$, then $x^{-1} \in U(R)$.

Proof. We have that $x \cdot x^{-1} = 1$, so, since R is commutative, we have that $x^{-1} \cdot x = 1$ [and $x \in R$]. Hence, by definition, we have that $x^{-1} \in U(R)$.

(b) [15 points] Show that if $x, y \in U(R)$, then $xy \in U(R)$.

Proof. Since $x, y \in U(R)$, there $x^{-1}, y^{-1} \in R$ such that $xx^{-1} = 1$, $yy^{-1} = 1$. Also, since R is a ring $x^{-1} \cdot y^{-1} \in R$. Then,

$$(xy) \cdot (x^{-1}y^{-1}) = (xx^{-1})(yy^{-1}) = 1 \cdot 1 = 1.$$

So, $xy \in U(R)$.

1

3) [20 points] Let F be a field and suppose that \mathbb{F}_3 is a subfield of F. Prove that the prime field of F is \mathbb{F}_3 . [I proved this in class (in more generality), but you can't use it here, of course. It's a very simple proof though!]

Proof. Let E be the prime field of F. So, by its minimality, we have that $E \subseteq \mathbb{F}_3$. On the other hand, since E is a subfield, we have that $1_F \in E$. Since \mathbb{F}_3 is a subfield of F, we have that $1_F = 1_{\mathbb{F}_3} = [1]$, and hence $[1] \in E$. Now, since E is a field, it's closed under addition, and hence $[1] + [1] = [2] \in E$ and $[2] + [1] = [3] = [0] \in E$. So, $\mathbb{F}_3 = \{[0], [1], [2]\} \subseteq E$. Therefore, $E = \mathbb{F}_3$. 4) Let R be a ring with $\mathbb{F}_2 = \{[0], [1]\}$ [also denoted \mathbb{I}_2 or $\mathbb{Z}/2\mathbb{Z}$] as a subring, and having exactly four elements, say $R = \{[0], [1], a, b\}$. [So, no two among [0], [1], a, and b are equal! Hence, $a \neq b, a \neq [1], b \neq [0]$, etc.]

(a) [15 points] Prove that since R contains \mathbb{F}_2 , we have that 2x = 0 [or x + x = 0] for all $x \in R$. [Hint: Use the ring axioms [and the fact that \mathbb{F}_2 is a subring, of course]. The axioms are given in the last page.]

Proof. First observe that since \mathbb{F}_2 is a subring of R, we have $1_R = 1_{\mathbb{F}_2} = [1]$, and $0_R = 0_{\mathbb{F}_2} = [0]$.

We have:

$$2x = x + x$$

= $x \cdot (1_R + 1_R)$
= $x \cdot ([1] + [1])$
= $x \cdot [0]$
= $x \cdot 0_R$
= 0_R .

		٦

(b) [15 points] Prove that a + [1] = b. [Hint: Prove that $a + [1] \neq [0]$, $a + [1] \neq [1]$, and $a + [1] \neq a$.]

Proof. Since R is a ring, it's closed under addition. Then, $a + [1] \in R$. So, we have that a + [1] is either [0], [1], a or b.

If a + [1] = [0], then, adding [1] we get a = [1], a contradiction.

If a + [1] = [1], then, adding [1] we get a = [0], a contradiction.

If a + [1] = a, then a + [1] = a + [0], and by the additive cancellation law [i.e., adding -a to both sides], we have [1] = [0], a contradiction.

So, the only possibility is that a + [1] = b.

Commutative Ring Axioms: A [non-empty] set with two operations, + and \cdot , is a commutative ring if:

- 0. For all $a, b \in R$ we have that $a + b \in R$ and $a \cdot b \in R$.
- 1. For all $a, b \in R$ we have that a + b = b + a.
- 2. For all $a, b, c \in R$ we have that (a + b) + c = a + (b + c).
- 3. There exists $0 \in R$ such that for all $a \in R$ we have a + 0 = a.
- 4. For all $a \in R$ there exists $-a \in R$ such that a + (-a) = 0.
- 5. For all $a, b \in R$ we have that $a \cdot b = b \cdot a$.
- 6. For all $a, b, c \in R$ we have that $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 7. There is $1 \in R$ such that for all $a \in R$ we have that $1 \cdot a = a$
- 8. For all $a, b, c \in R$ we have that $a \cdot (b + c) = a \cdot b + a \cdot c$