
1) [20 points] Compute the remainder of 22839 when divided by 13. [Show work!]

Solution. We have:

2839 = 218 · 13 + 5

218 = 16 · 13 + 10

16 = 1 · 13 + 3

1 = 0 · 13 + 1.

So, 2839 = 5 + 10 · 13 + 3 · 132 + 1 · 133. Then, by Fermat’s Theorem:

22839 = 25+10·13+3·132+1·133 ≡ 25+10+3+1 = 219

= 26+1·13 ≡ 26+1 = 27 = 24 · 23 ≡ 3 · 8 = 24 ≡ 11 (mod 13).

So, the remainder is 11.

2) [20 points] Find all integers x such that

5x ≡ 7 (mod 8)

2x ≡ 4 (mod 10).

[If there is no such integer, explain how you could tell.]

Solution. Since 2 · 8 + (−3) · 5 = 1, we have that the first equation gives that x ≡ −3 · 7 =

−21 ≡ 3 (mod 8). So, x = 8k + 3, for some k ∈ Z.

Substituting in the second equation, we get: 2·(8k+3) ≡ 4 (mod 10), so 6k ≡ −2 (mod 10).

Now, gcd(8, 10) = 2 and 2 | −2, so we have a solution. Dividing through out [including

modulus] by 2, getting 3k ≡ −1 (mod 5). Now 2 · 3 + (−1) · 5 = 1, so multiplying by 2, we

get k ≡ −2 ≡ 3 (mod 5). So, k = 5l + 3 for l ∈ Z.

Substituting back, we get x = 8(5l + 3) + 3 = 40l + 27, for l ∈ Z.
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3) [20 points] Prove that there are no positive integers a and b such that

gcd(a, b) = 25 · 34 · 7 · 112,

lcm(a, b) = 28 · 32 · 53 · 72 · 112.

[Make it very clear what results you are using!]

Proof. We have that gcd(a, b) | a and a | lcm(a, b). So, gcd(a, b) | lcm(a, b). By Lemma 1.54,

this means that the power of 3 in gcd(a, b), namely 4, must be less than or equal to the

power of 3 in lcm(a, b), namely 2. So, clearly we have a contradiction, so no such a and b

exist.

Alternative Proof: By Proposition 1.55, the power of 3 in gcd(a, b), namely 4, is the

minimum between the powers of 3 in a and b, say x and y respectively. [So, min(x, y) = 4.]

On the other hand, the power of 3 in lcm(a, b), namely 2, is the maximum between the

powers of 3 in a and b. [So, max(x, y) = 2.]

But this means that max(x, y) = 2 < 4 = min(x, y), a contradiction.

4) [20 points] Show that if x, y and z are integers such that x4 + y4 = z4, then at least one

of them is divisible by 3.

Proof. Suppose none of x, y and z are divisible by 3. Then, they are congruent to either

1 or 2 modulo 3. Hence, their fourth powers are 14 = 1 and 24 = 16 ≡ 1 (mod 3). [Thus,

x4 ≡ y4 ≡ z4 ≡ 1 (mod 3).] Then,

x4 + y4 ≡ 1 + 1 = 2 (mod 3).

But if x4 + y4 = z4, then

x4 + y4 ≡ z4 ≡ 1 (mod 3).

Since 1 6≡ 2 (mod 3), we have a contradiction. Hence, at least one of x, y and z must be

divisible by 3.
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5) [20 points] Let a ∈ Z≥2 with prime factorization

a = pe11 · pe22 · · · p
ek
k

[pi’s distinct primes and ei ∈ Z>0]. Prove that a is a perfect square [i.e., a = b2 for some

b ∈ Z] if and only if ei is even for all i.

[Note: This was a HW Problem.]

Proof. [⇒] Suppose that a = b2 for some b ∈ Z. Since b2 = (−b)2 we may assume that b ≥ 0.

Since a ≥ 2, we must have that b ≥ 2 [as 02 = 0 < 2 and 12 = 1 < 2]. Let

b = qf11 · · · q
fl
l ,

with qi’s distinct primes and fi > 0. Then,

pe11 · pe22 · · · p
ek
k = a = b2 = (qf11 · · · q

fl
l )2 = q2f11 · · · q

2fl
l .

By the Fundamental Theorem of Arithmetic, the pi’s and qi’s are the same primes, up to

order, and their corresponding exponents are the same. Since the exponents on the left-hand

side are all even [namely 2fi], the exponents on the right hand side [namely, the ei’s] must

also be even.

[⇐] Suppose that all ei’s are even, say ei = 2fi. Then:

a = pe11 · pe22 · · · p
ek
k = p2f11 · p

2f2
2 · · · p

2fk
k = (pf11 · p

f2
2 · · · p

fk
k )2.

Since pf11 · p
f2
2 · · · p

fk
k ∈ Z, we have that a is a perfect square.
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