1) [20 points] Compute the remainder of 2^{2839} when divided by 13 . [Show work!]

Solution. We have:

$$
\begin{aligned}
2839 & =218 \cdot 13+5 \\
218 & =16 \cdot 13+10 \\
16 & =1 \cdot 13+3 \\
1 & =0 \cdot 13+1 .
\end{aligned}
$$

So, $2839=5+10 \cdot 13+3 \cdot 13^{2}+1 \cdot 13^{3}$. Then, by Fermat's Theorem:

$$
\begin{aligned}
2^{2839}=2^{5+10 \cdot 13+3 \cdot 13^{2}+1 \cdot 13^{3}} \equiv & 2^{5+10+3+1}=2^{19} \\
& =2^{6+1 \cdot 13} \equiv 2^{6+1}=2^{7}=2^{4} \cdot 2^{3} \equiv 3 \cdot 8=24 \equiv 11 \quad(\bmod 13)
\end{aligned}
$$

So, the remainder is 11 .
2) [20 points] Find all integers x such that

$$
\begin{array}{ll}
5 x \equiv 7 & (\bmod 8) \\
2 x \equiv 4 & (\bmod 10)
\end{array}
$$

[If there is no such integer, explain how you could tell.]
Solution. Since $2 \cdot 8+(-3) \cdot 5=1$, we have that the first equation gives that $x \equiv-3 \cdot 7=$ $-21 \equiv 3(\bmod 8)$. So, $x=8 k+3$, for some $k \in \mathbb{Z}$.
Substituting in the second equation, we get: $2 \cdot(8 k+3) \equiv 4(\bmod 10)$, so $6 k \equiv-2(\bmod 10)$. Now, $\operatorname{gcd}(8,10)=2$ and $2 \mid-2$, so we have a solution. Dividing through out [including modulus] by 2 , getting $3 k \equiv-1(\bmod 5)$. Now $2 \cdot 3+(-1) \cdot 5=1$, so multiplying by 2 , we get $k \equiv-2 \equiv 3(\bmod 5)$. So, $k=5 l+3$ for $l \in \mathbb{Z}$.
Substituting back, we get $x=8(5 l+3)+3=40 l+27$, for $l \in \mathbb{Z}$.
3) [20 points] Prove that there are no positive integers a and b such that

$$
\begin{aligned}
& \operatorname{gcd}(a, b)=2^{5} \cdot 3^{4} \cdot 7 \cdot 11^{2} \\
& \operatorname{lcm}(a, b)=2^{8} \cdot 3^{2} \cdot 5^{3} \cdot 7^{2} \cdot 11^{2}
\end{aligned}
$$

[Make it very clear what results you are using!]
Proof. We have that $\operatorname{gcd}(a, b) \mid a$ and $a \mid \operatorname{lcm}(a, b)$. So, $\operatorname{gcd}(a, b) \mid \operatorname{lcm}(a, b)$. By Lemma 1.54, this means that the power of 3 in $\operatorname{gcd}(a, b)$, namely 4 , must be less than or equal to the power of 3 in $\operatorname{lcm}(a, b)$, namely 2 . So, clearly we have a contradiction, so no such a and b exist.

Alternative Proof: By Proposition 1.55, the power of 3 in $\operatorname{gcd}(a, b)$, namely 4, is the minimum between the powers of 3 in a and b, say x and y respectively. $[\operatorname{So}, \min (x, y)=4$.] On the other hand, the power of 3 in $\operatorname{lcm}(a, b)$, namely 2 , is the maximum between the powers of 3 in a and b. $[\operatorname{So}, \max (x, y)=2$.]
But this means that $\max (x, y)=2<4=\min (x, y)$, a contradiction.
4) [20 points] Show that if x, y and z are integers such that $x^{4}+y^{4}=z^{4}$, then at least one of them is divisible by 3 .

Proof. Suppose none of x, y and z are divisible by 3. Then, they are congruent to either 1 or 2 modulo 3 . Hence, their fourth powers are $1^{4}=1$ and $2^{4}=16 \equiv 1(\bmod 3)$. [Thus, $\left.x^{4} \equiv y^{4} \equiv z^{4} \equiv 1(\bmod 3).\right]$ Then,

$$
x^{4}+y^{4} \equiv 1+1=2 \quad(\bmod 3)
$$

But if $x^{4}+y^{4}=z^{4}$, then

$$
x^{4}+y^{4} \equiv z^{4} \equiv 1 \quad(\bmod 3)
$$

Since $1 \not \equiv 2(\bmod 3)$, we have a contradiction. Hence, at least one of x, y and z must be divisible by 3 .
5) [20 points] Let $a \in \mathbb{Z}_{\geq 2}$ with prime factorization

$$
a=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}
$$

[p_{i} 's distinct primes and $e_{i} \in \mathbb{Z}_{>0}$]. Prove that a is a perfect square [i.e., $a=b^{2}$ for some $b \in \mathbb{Z}]$ if and only if e_{i} is even for all i.
[Note: This was a HW Problem.]
Proof. [\Rightarrow] Suppose that $a=b^{2}$ for some $b \in \mathbb{Z}$. Since $b^{2}=(-b)^{2}$ we may assume that $b \geq 0$. Since $a \geq 2$, we must have that $b \geq 2$ as $0^{2}=0<2$ and $\left.1^{2}=1<2\right]$. Let

$$
b=q_{1}^{f_{1}} \cdots q_{l}^{f_{l}}
$$

with q_{i} 's distinct primes and $f_{i}>0$. Then,

$$
p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}=a=b^{2}=\left(q_{1}^{f_{1}} \cdots q_{l}^{f_{l}}\right)^{2}=q_{1}^{2 f_{1}} \cdots q_{l}^{2 f_{l}}
$$

By the Fundamental Theorem of Arithmetic, the p_{i} 's and q_{i} 's are the same primes, up to order, and their corresponding exponents are the same. Since the exponents on the left-hand side are all even [namely $2 f_{i}$], the exponents on the right hand side [namely, the $e_{i}{ }^{\prime}$'s] must also be even.
$[\Leftarrow]$ Suppose that all e_{i} 's are even, say $e_{i}=2 f_{i}$. Then:

$$
a=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}=p_{1}^{2 f_{1}} \cdot p_{2}^{2 f_{2}} \cdots p_{k}^{2 f_{k}}=\left(p_{1}^{f_{1}} \cdot p_{2}^{f_{2}} \cdots p_{k}^{f_{k}}\right)^{2}
$$

Since $p_{1}^{f_{1}} \cdot p_{2}^{f_{2}} \cdots p_{k}^{f_{k}} \in \mathbb{Z}$, we have that a is a perfect square.

