[20 points] Compute the remainder of 2²⁸³⁹ when divided by 13. [Show work!]
Solution. We have:

```
2839 = 218 \cdot 13 + 5218 = 16 \cdot 13 + 1016 = 1 \cdot 13 + 31 = 0 \cdot 13 + 1.
```

So, $2839 = 5 + 10 \cdot 13 + 3 \cdot 13^2 + 1 \cdot 13^3$. Then, by *Fermat's Theorem*:

 $2^{2839} = 2^{5+10\cdot13+3\cdot13^2+1\cdot13^3} \equiv 2^{5+10+3+1} = 2^{19}$ $= 2^{6+1\cdot13} \equiv 2^{6+1} = 2^7 = 2^4 \cdot 2^3 \equiv 3 \cdot 8 = 24 \equiv 11 \pmod{13}.$

So, the remainder is 11.

2) [20 points] Find all integers x such that

$$5x \equiv 7 \pmod{8}$$
$$2x \equiv 4 \pmod{10}.$$

[If there is no such integer, explain how you could tell.]

Solution. Since $2 \cdot 8 + (-3) \cdot 5 = 1$, we have that the first equation gives that $x \equiv -3 \cdot 7 = -21 \equiv 3 \pmod{8}$. So, x = 8k + 3, for some $k \in \mathbb{Z}$.

Substituting in the second equation, we get: $2 \cdot (8k+3) \equiv 4 \pmod{10}$, so $6k \equiv -2 \pmod{10}$. Now, gcd(8, 10) = 2 and $2 \mid -2$, so we have a solution. Dividing through out [including modulus] by 2, getting $3k \equiv -1 \pmod{5}$. Now $2 \cdot 3 + (-1) \cdot 5 = 1$, so multiplying by 2, we get $k \equiv -2 \equiv 3 \pmod{5}$. So, k = 5l+3 for $l \in \mathbb{Z}$.

Substituting back, we get x = 8(5l+3) + 3 = 40l + 27, for $l \in \mathbb{Z}$.

3) [20 points] Prove that there are no positive integers a and b such that

$$gcd(a,b) = 2^5 \cdot 3^4 \cdot 7 \cdot 11^2,$$
$$lcm(a,b) = 2^8 \cdot 3^2 \cdot 5^3 \cdot 7^2 \cdot 11^2$$

[Make it *very* clear what results you are using!]

Proof. We have that gcd(a, b) | a and a | lcm(a, b). So, gcd(a, b) | lcm(a, b). By Lemma 1.54, this means that the power of 3 in gcd(a, b), namely 4, must be less than or equal to the power of 3 in lcm(a, b), namely 2. So, clearly we have a contradiction, so no such a and b exist.

Alternative Proof: By Proposition 1.55, the power of 3 in gcd(a, b), namely 4, is the minimum between the powers of 3 in a and b, say x and y respectively. [So, min(x, y) = 4.] On the other hand, the power of 3 in lcm(a, b), namely 2, is the maximum between the powers of 3 in a and b. [So, max(x, y) = 2.]

But this means that $\max(x, y) = 2 < 4 = \min(x, y)$, a contradiction.

4) [20 points] Show that if x, y and z are integers such that $x^4 + y^4 = z^4$, then at least one of them is divisible by 3.

Proof. Suppose none of x, y and z are divisible by 3. Then, they are congruent to either 1 or 2 modulo 3. Hence, their fourth powers are $1^4 = 1$ and $2^4 = 16 \equiv 1 \pmod{3}$. [Thus, $x^4 \equiv y^4 \equiv z^4 \equiv 1 \pmod{3}$.] Then,

$$x^4 + y^4 \equiv 1 + 1 = 2 \pmod{3}.$$

But if $x^4 + y^4 = z^4$, then

$$x^4 + y^4 \equiv z^4 \equiv 1 \pmod{3}$$

Since $1 \not\equiv 2 \pmod{3}$, we have a contradiction. Hence, at least one of x, y and z must be divisible by 3.

5) [20 points] Let $a \in \mathbb{Z}_{\geq 2}$ with prime factorization

$$a = p_1^{e_1} \cdot p_2^{e_2} \cdots p_k^{e_k}$$

 $[p_i$'s distinct primes and $e_i \in \mathbb{Z}_{>0}]$. Prove that a is a perfect square [i.e., $a = b^2$ for some $b \in \mathbb{Z}$] if and only if e_i is even for all i.

[Note: This was a HW Problem.]

Proof. $[\Rightarrow]$ Suppose that $a = b^2$ for some $b \in \mathbb{Z}$. Since $b^2 = (-b)^2$ we may assume that $b \ge 0$. Since $a \ge 2$, we must have that $b \ge 2$ [as $0^2 = 0 < 2$ and $1^2 = 1 < 2$]. Let

$$b = q_1^{f_1} \cdots q_l^{f_l},$$

with q_i 's distinct primes and $f_i > 0$. Then,

$$p_1^{e_1} \cdot p_2^{e_2} \cdots p_k^{e_k} = a = b^2 = (q_1^{f_1} \cdots q_l^{f_l})^2 = q_1^{2f_1} \cdots q_l^{2f_l}.$$

By the Fundamental Theorem of Arithmetic, the p_i 's and q_i 's are the same primes, up to order, and their corresponding exponents are the same. Since the exponents on the left-hand side are all even [namely $2f_i$], the exponents on the right hand side [namely, the e_i 's] must also be even.

 $[\Leftarrow]$ Suppose that all e_i 's are even, say $e_i = 2f_i$. Then:

$$a = p_1^{e_1} \cdot p_2^{e_2} \cdots p_k^{e_k} = p_1^{2f_1} \cdot p_2^{2f_2} \cdots p_k^{2f_k} = (p_1^{f_1} \cdot p_2^{f_2} \cdots p_k^{f_k})^2.$$

Since $p_1^{f_1} \cdot p_2^{f_2} \cdots p_k^{f_k} \in \mathbb{Z}$, we have that *a* is a perfect square.