1) [20 points] Use the Extended Euclidean Algorithm to write the GCD of 78 and 44 as a linear combination of themselves. Show work!
[Hint: You should get 2 for the GCD!]
Solution. We have:

$$
\begin{aligned}
78 & =44 \cdot 1+34 \\
44 & =34 \cdot 1+10 \\
34 & =10 \cdot 3+4 \\
10 & =4 \cdot 2+2 \\
4 & =2 \cdot 2+0
\end{aligned}
$$

So,

$$
\begin{aligned}
2 & =10+(-2) \cdot 4 \\
& =10+(-2) \cdot[34+(-3) \cdot 10] \\
& =7 \cdot 10+(-2) \cdot 34 \\
& =7 \cdot[44+(-1) 34]+(-2) \cdot 34 \\
& =7 \cdot 44+(-9) \cdot 34 \\
& =7 \cdot 44+(-9) \cdot[78+(-1) \cdot 44] \\
& =16 \cdot 44+(-9) \cdot 78 .
\end{aligned}
$$

2) [20 points] Express 355 in base 4. Show work!

Solution. We have:

$$
\begin{aligned}
355 & =4 \cdot 88+3 \\
88 & =4 \cdot 22+0 \\
22 & =4 \cdot 5+2 \\
5 & =4 \cdot 1+1 \\
1 & =4 \cdot 0+1 .
\end{aligned}
$$

So,

$$
355=3+0 \cdot 4+2 \cdot 4^{2}+1 \cdot 4^{3}+1 \cdot 4^{4}
$$

3) [20 points] Let $a, b \in \mathbb{Z} \backslash\{0\}$. Prove that $(a, b) \neq 1$ if and only if there is a prime p such that $p \mid a$ and $p \mid b$.

Proof. Suppose $(a, b)=d \neq 1$. So, $d \geq 2$ and hence it's either prime or a product of primes, and hence divisible by some prime p. Since $p \mid d$ and $d \mid a, b$, we have that $p \mid a, b$.

Conversely, suppose that $p \mid a, b$. Then, p is a common divisor greater than one, so $(a, b)>$ 1.
4) [20 points] Let $a, b, c, d \in \mathbb{Z} \backslash\{0\}$ with $a|c, b| d$ and $(c, d)=1$. Prove that $(a, b)=1$.

Proof. Suppose $e>0$ with $e \mid a$ and $e \mid b$. Since $e \mid a$ and $a \mid c$, we have $e \mid c$.
Similarly, since $e \mid b$ and $b \mid d$, we get $e \mid d$. So, $e>0$ and $e \mid c, d$. Since $(c, d)=1$, we have that $e=1$. So, the only positive common divisor of a and b is 1 , and hence $(a, b)=1$.
[Alternatively, since $a \mid c$ and $b \mid d$, there are $k, l \in \mathbb{Z}$ such that $c=a k, d=b l$. Since $(c, d)=1$, by Bezout's Theorem, there are $r, s \in \mathbb{Z}$ such that

$$
r c+s d=1 \quad \Rightarrow \quad r a k+s b l=1 \quad \Rightarrow \quad(r k) a+(s l) b=1 .
$$

Since 1 is a linear combination of a and b, we have $(a, b)=1$.]
5) [20 points] Prove that if $(a, b)=d$, then $(a / d, b / d)=1$.
[Hint: This was a HW problem.]
Proof. By Bezout's Theorem, we have:

$$
a r+b s=d, \quad \text { for some } r, s \in \mathbb{Z}
$$

Dividing by d we get:

$$
\frac{a}{d} r+\frac{b}{d} s=1 .
$$

[Note that $a / d, b / d \in \mathbb{Z}$, as d is a common divisor.] Then, since the linear combination gives 1 , the GCD is 1 [we have the converse to Bezout's Theorem in this case]. So, $(a / d, b / d)=1$.

