
1) Let C be the curve given by r(t) = 〈t, t2, t3〉 for t ∈ [0, 2].

(a) [3 points] Find the equation of the line tangent to C at the point given by t = 1.

Solution. We have r′(t) = 〈1, 2t, 3t2〉. Then,

L(t) = r(1) + t · r′(1) =⇒ L(t) = 〈1, 1, 1〉+ t · 〈1, 2, 3〉 = 〈1 + t, 1 + 2t, 1 + 3t〉 .

(b) [3 points] Give a simple [i.e., Calculus 2] integral that gives the arc length of C for

t ∈ [0, 2]. Do not compute the integral!

Solution. ∫ 2

0

‖r′(t)‖ dt =

∫ 2

0

√
1 + 4t2 + 9t4 dt.

Continues on the next page!
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(c) [5 points] Give a simple [i.e., Calculus 2] integral that gives the work against F =

〈x2,−y2, z〉 of moving a particle along the curve C [i.e., the curve given by r(t) =

〈t, t2, t3〉 for t ∈ [0, 2]; to be clear, we are moving the particle starting at t = 0 and

ending at t = 2]. Do not compute the integral!

Solution. ∫
C
F · dr =

∫ 2

0

F(r(t)) · r′(t) dt

=

∫ 2

0

〈
t2,−t4, t3

〉
·
〈
1, 2t, 3t2

〉
dt

=

∫ 2

0

t2 + t5 dt.
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2) Let f(x, y) = xy and D be the region given by 4x2 + 9y2 ≤ 32.

(a) [2 points] Compute the partial derivatives fx and fy.

Solution.

fx = y,

fy = x.

(b) [2 points] Find all the critical points of f(x, y) = xy in R2. [So, not only inside D.]

Solution.

fx = y = 0,

fy = x = 0.

So, (x, y) = (0, 0) is the only critical point.

(c) [3 points] For each critical point of the previous part, classify it as local maximum,

local minimum, or saddle.

Solution. fxx = fyy = 0, fxy = fyx = 1. So, the discriminant is D = 0 · 0 − 12 = −1,

hence (0, 0) is a saddle point.

Continues on the next page!
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(d) [6 points] Use Lagrange’s Multipliers to find the global maximum and minimum of

f(x, y) = xy on the ellipse 4x2 + 9y2 = 32 [the boundary of D].

Solution. We have:

g(x, y) = 0 =⇒ 4x2 + 9y2 = 32

fx = λ · gx =⇒ y = λ · 8x

fy = λ · gy =⇒ x = λ · 18y

Note that x 6= 0, as otherwise the second equation would give y = 0, but (0, 0) does

not satisfy the first equation. Similarly, y 6= 0.

Thus,
y

8x
= λ =

x

18y
=⇒ 18y2 = 8x2.

Hence, y = ±2x/3. Substituting in the first equation we get 8x2 = 32, and therefore

x = ±2.

So, we have four candidates: (2, 4/3), (2,−4/3), (−2,−4/3) and (−2, 4/3). Therefore,

the global maximum on the ellipse is 8/3 and the global minimum is −8/3.

Continues on the next page!
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(e) [3 points] Find the global maximum and minimum of f(x, y) = xy in D [the region

given by 4x2 + 9y2 ≤ 32].

Solution. We know that the global maximum and minimum of f in D occur either at

the boundary or at a critical point in the interior of D. The former, by the previous

part, gives that maximum and minimum on the boundary are 8/3 and −8/3. The only

critical point in the interior of D is (0, 0), which gives 0.

So, the global maximum is 8/3 and the global minimum is −8/3.

3) Let f(x, y, z) = xy2 − zx2 and F = 〈y2 − 2xz, 2xy,−x2〉.

(a) [3 points] Show that f(x, y, z) is the potential of F.

Solution. We have fx = y2 − 2xz, fy = 2xy, and fz = −x2. Thus, ∇f = F, i.e., f is

the potential of F.

(b) [3 points] In what direction from P = (0, 1, 0) does the potential of F = 〈y2 − 2xz, 2xy,−x2〉
[as before] increase the most? [Your answer should be a three dimensional vector. Hint:

Don’t let all the terminology confuse you. This is a very simple question.]

Solution. The potential, i.e., f(x, y, z) increases with the highest rate at ∇f(P ) =

F(P ) = 〈1, 0, 0〉.

Continues on the next page!
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(c) [4 points] Let C be the polygonal path [i.e., made of straight line segments] going from

(0, 0, 0), to (0,−1, 0), to (0, 0, 2) and finally to (1, 1, 0). Compute

∫
C
F · dr.

Solution. We have, since f is the potential of F, that∫
C
F · dr = f(1, 1, 0)− f(0, 0, 0) = 1− 0 = 1.
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4) Let C be the triangle with vertices (0, 1), (0,−1) and (1, 0), oriented clockwise, and

F = 〈ex, sin(y)− 2x〉.

(a) [3 points] Sketch C. Draw arrows on C to show the correct orientation.

Solution.

1

1

−1

x

y

(b) [3 points] Compute curlz(F). [Remember F = 〈ex, sin(y)− 2x〉.]

Solution.

curlz(F) =
∂

∂x
(sin(y)− 2x)− ∂

∂y
(ex) = −2− 0 = −2.

Continues on the next page!
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(c) [6 points] Compute

∮
C
F · dr. [Remember C is the triangle with vertices (0, 1), (0,−1)

and (1, 0), oriented clockwise, and F = 〈ex, sin(y)− 2x〉.]

[Hint: There is an easy way and a hard way of doing this. If you do it the hard way,

you might be pressed on time.]

Solution. Let D be the filled triangle with boundary C. Note that the orientation of C
[clockwise] is the opposite of the boundary orientation! Then, by Green’s Theorem:∮

C
F · dr = −

∫∫
D

curlz(F) dA

= −
∫∫
D
−2 dA

= 2 · area(D)

= 2 · 1 = 2.
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5) Let S be the surface given part of the sphere x2 + y2 + z2 = 13 with z ≤ 2 [so we are

“chopping” the top of the sphere at height 2 – see figure below], oriented with normal vectors

pointing toward its center. Let also F = 〈y,−x, 0〉

y

x

z

S

(a) [2 points] Draw on the picture above an arrow on the curve ∂S [the boundary of the

surface S above] to show the correct boundary orientation.

[Hint: The boundary is where z = 2.]

(b) [4 points] Give a parametrization r(t) of ∂S. [Don’t forget to give the range of the

parameter t.]

Solution. We have, when z = 2: x2 + y2 + 4 = 13, so x2 + y2 = 9. Hence, ∂S is a circle

of radius 3 on the plane z = 2. Thus,

r(t) = 〈3 cos(t), 3 sin(t), 2〉 .

Since this parametrization goes counterclockwise [when seen from above], it has the

correct orientation.

(c) [3 points] Compute curl(F). [Remember: F = 〈y,−x, 0〉.]

Solution.

curl(F) =

∣∣∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

y −x 0

∣∣∣∣∣∣∣∣ = 〈0, 0,−1− 1〉 = 〈0, 0,−2〉 .

Continues on the next page!
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(d) [6 points] Compute

∫∫
S

curl(F) · dS. [Remember: F = 〈y,−x, 0〉.]

[Hint: There is an easy way and a hard way of doing this. If you do it the hard way,

you might be pressed on time. Also, if you need to use (b), and could not find it, use

the parametrization r(t) = 〈2 cos(t), 2 sin(t), 1〉 for t ∈ [0,π].]

Solution. Since S is a bit complicated, it might be easier to use Stokes’ Theorem. So:∫∫
S

curl(F) · dS =

∮
∂S

F · dr

=

∫ 2π

0

〈3 sin(t),−3 cos(t), 0〉 · 〈−3 sin(t), 3 cos(t), 0〉 dt

=

∫ 2π

0

−9 sin2(t)− 9 cos2(t) dt

=

∫ 2π

0

−9 dt = −18π.
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6) LetW be the box given by 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, and 1 ≤ z ≤ 3 [i.e., [0, 1]× [0, 2]× [1, 3]]

and F = 〈xy, yz, y2z〉.

(a) [3 points] Compute div(F).

Solution.

div(F) =
∂

∂x
(xy) +

∂

∂y
(yz) +

∂

∂z
(y2z) = y + z + y2.

(b) [6 points] Compute the flux of F through [or across] ∂W with the usual boundary

orientation.

[Hint: There is an easy way and a hard way of doing this. If you do it the hard way,

you might be pressed on time.]

Solution. We use Gauss’ Theorem:∫∫
∂W

F · dS =

∫∫∫
W

div(F) dV

=

∫ 1

0

[∫ 2

0

[∫ 3

1

y + y2 + z dz

]
dy

]
dz

=

∫ 1

0

[∫ 2

0

2y + 2y2 + 4 dy

]
dz

=

∫ 1

0

4 +
16

3
+ 8 dz

= 12 +
16

3
=

52

3
.
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7) [5 points] Let S be the surface given by the parts of the sphere x2 + y2 + z2 = 9 with

x ≥ 0 and z ≤ 0. Give a parametrization of S.

Solution. We use spherical coordinates with ρ = 3, θ ∈ [−π/2,π/2] [for x ≥ 0] and φ ∈
[π/2,π] [for z ≤ 0]. So, the parametrization is

G(u, v) = (3 cos(θ) sin(φ), 3 sin(θ) sin(φ), 3 cos(φ))

with θ ∈ [−π/2,π/2] and φ ∈ [π/2,π].
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8) Let S be the surface given by the parametrization G(u, v) = (u, v, u2− v2) for (u, v) ∈ D,

where D is the disc x2 + y2 ≤ 4.

(a) [3 points] Compute the partial derivatives Gu(u, v) and Gv(u, v).

Solution.

Gu = 〈1, 0, 2u〉 ,

Gv = 〈0, 1,−2v〉 .

(b) [3 points] Compute Gu(u, v)×Gv(u, v) [for Gu and Gv found in part (b)].

Solution.

Gu ×Gv =

∣∣∣∣∣∣∣∣
i j k

1 0 2u

0 1 −2v

∣∣∣∣∣∣∣∣ = 〈2u, 2v, 1〉 .

(c) [3 points] Give the equation of the plane tangent to S at the point (0, 1,−1) in the

form ax+ by + cz = d.

Solution. If G(u, v) = (u, v, u2 − v2) = (0, 1,−1), then (u, v) = (0, 1). The normal

vector is then 〈2 · 0, 2 · 1, 1〉 = 〈0, 2, 1〉. So, the tangent plane is:

(〈x, y, z〉 − 〈0, 1,−1〉) · 〈0, 2, 1〉 = 0.

So,

0 · (x− 0) + 2 · (y − 1) + 1 · (z − 1) = 0 =⇒ 2y + z = 3.

Continues on the next page!
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(d) [6 points] Express the surface area of S [the same S as in the previous items] as iterated

simple [i.e., Calculus 2] integrals. [In other words, you will set up the integral that

gives the area of S, but not compute it!]

Solution. The surface area of S is given by:∫∫
S

1 dS =

∫∫
S
‖N‖ dA

=

∫∫
D
‖Gu ×Gv‖ dA

=

∫∫
D
‖〈2u, 2v, 1〉‖ dA

=

∫∫
D

√
4u2 + 4v2 + 1 dA

=

∫ 2π

0

[∫ 2

0

√
4r2 + 1 r dr

]
dθ.

Continues on the next page!
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(e) [6 points] Let now F = 〈z, y, xy〉 and S be as above [given by G(u, v) = (u, v, u2 − v2)
for (u, v) ∈ D, where D is the disc x2 + y2 ≤ 4] oriented with upward pointing normal

vectors. Express

∫∫
S
F · dS as a double integral. [In other words, you do not even

need to write it as iterated simple integrals, simply as a double (Calculus 3,

Chapter 15) area integral, something like

∫∫
···
· · · dA. Don’t forget to give the domain

of integration and simplify the integrand! ]

Solution. Note that our normal vectors are upward points, since 〈2u, 2v, 1〉 has positive

z-coordinate. ∫∫
S
F · dS =

∫∫
D
F(G(u, v)) ·N(u, v) dA

=

∫∫
D

〈
u2 − v2, v, uv

〉
· 〈2u, 2v, 1〉 dA

=

∫∫
D

2u2 − 2uv2 + 2v2 + uv dA.

Here D is still the one from the parametrization of S.
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