FROM CUBICS TO ELLIPTIC CURVES

MATH 556 - SPRING 2017

A Small Correction

We will follow the steps laid out in Section 1.3 [more precisely, pg. 17] from our text. We should start by observing that there is a small [fixable!] mistake in the text. Consider the [non-singular - check!] cubic:

$$
C: x y^{2}+x^{2}+y^{2}+1=0,
$$

or, in projective coordinates:

$$
C: X Y^{2}+X^{2} Z+Y^{2} Z+Z^{3}=0,
$$

So, note that C passes through $[1: 0: 0]$ and $[0: 1: 0]$. Moreover, the line tangent to the first point passes through the second: indeed, let $u \stackrel{\text { def }}{=} Y / X$ and $v \stackrel{\text { def }}{=} Z / X$. Then, in the affine plane $X \neq 0$, we have that our curve has equation:

$$
u^{2}+v+u^{2} v+v^{3}=0
$$

and $[1: 0: 0]$ corresponds to $(0,0)$. Then we can see that the tangent line at $(0,0)$ is $v=0$, i.e., $Z=0$ [in which $[0: 1: 0]$ lays!].

So, C satisfies the conditions outlined in Section 1.3, but not the general formula given [in the first displayed equation of pg. 17], as it has a term in y^{2}.

But, this can be easily remediated: if we have an equation of the form:

$$
x y^{2}+f y^{2}+(a x+b) y=c x^{2}+d x+e,
$$

then replacing $x+f$ by x [and y by y] we get the equation

$$
x y^{2}+(a x+(b-a f)) y=c x^{2}+(d-2 c f) x+\left(e+c f^{2}-d f\right) .
$$

[The map between them is $(x, y) \mapsto(x+f, y)$.]
So, we might need one extra step.

Example

Consider the curve and rational point

$$
\begin{equation*}
C: x^{3}+y^{3}=2, \quad \mathcal{O}=(1,1) . \tag{1}
\end{equation*}
$$

In projective coordinates:

$$
C: X^{3}+Y^{3}=2 Z^{3}, \quad \mathcal{O}=[1: 1: 1] .
$$

The tangent line at \mathcal{O} is $y=-x+1$ [or $X+Y-Z=0]$. The third point of intersection between this line and the cubic is $[1:-1: 0]$.

So, we need to map $[1: 1: 1] \mapsto[1: 0: 0]$ and $[1:-1: 0] \mapsto[0: 1: 0]$. By choosing to $\operatorname{map}[0: 0: 1] \mapsto[0: 0: 1]$, we get a matrix transfomation given by a matrix that is the inverse of

$$
M \stackrel{\text { def }}{=}\left[\begin{array}{rrr}
1 & 1 & 0 \\
1 & -1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

Then, the equation becomes:

$$
(X+Y)^{3}+(X-Y)^{3}=2(X+Z)^{3}
$$

which simplifies to

$$
\begin{equation*}
X Y^{2}=X^{2} Z+X Z^{2}+\frac{1}{3} Z^{3} \tag{2}
\end{equation*}
$$

or, in affine coordinates:

$$
\begin{equation*}
x y^{2}=x^{2}+x+\frac{1}{3} . \tag{3}
\end{equation*}
$$

Note that the map between the curves is given by the matrix M^{-1}, but since are in projective coordinates, we can multiply M^{1} by $\operatorname{det}(M)$ [or any other non-zero scalar] to avoid denominators. So, we get that the map between the curves is:

$$
\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right] \mapsto \operatorname{det}(M) \cdot M^{-1} \cdot\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{rrr}
-1 & -1 & 0 \\
-1 & 1 & 0 \\
1 & 1 & -2
\end{array}\right] \cdot\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{c}
-X-Y \\
-X+Y \\
X+Y-2 Z
\end{array}\right]
$$

Now, we multiply equation (3) by x, obtaining

$$
(x y)^{2}=x^{3}+x^{2}+\frac{1}{3} x
$$

and make the change $(x, y) \mapsto(x, x y)$, giving a new equation:

$$
\begin{equation*}
y^{2}=x^{3}+x^{2}+\frac{1}{3} x \tag{4}
\end{equation*}
$$

In projective coordinates, the map is $[X: Y: Z] \mapsto\left[X / Z: X Y / Z^{2}: 1\right]$, or better, $[X: Y: Z] \mapsto\left[X Z: X Y: Z^{2}\right]$.

Let's see what happens with the points at infinity of the original curve, namely $[1: 0: 0]$ and $[0: 1: 0]$. [This is a bit tricky.] As we can see the map given above is not well defined at those points, as they yield $[0: 0: 0]$ [i.e., nonsense]. So, we need to modify them:

$$
\begin{aligned}
{[X: Y: Z] \mapsto\left[X Z: X Y: Z^{2}\right] } & =\left[X Y Z: X Y^{2}: Y Z^{2}\right] & & \text { [mult. by } Y] \\
& =\left[X Y Z: X^{2} Z+X Z^{2}+Z^{3} / 3: Y Z^{2}\right] & & {[\text { by Eq. (22] }] } \\
& =\left[X Y: X^{2}+X Z+Z^{2} / 3: Y Z\right] & & {[\text { divide by } Z] }
\end{aligned}
$$

So $[1: 0: 0] \mapsto[0: 1: 0]$. [This had to be the case, as the rational point has to go to [$0: 1: 0]$ in the end!]

Also,

$$
\begin{aligned}
{[X: Y: Z] \mapsto\left[X Z: X Y: Z^{2}\right] } & =\left[X Z^{2}: X Y Z: Z^{3}\right] & & \text { [mult. by } Z] \\
& =\left[X Z^{2}: X Y Z: 3 X Y^{2}-3 X^{2} Z-3 X Z^{2}\right] & & {[\text { by Eq. (2) }] } \\
& =\left[Z^{2}: Y Z: 3 Y^{2}-3^{2} Z-3 Z^{2}\right] & & {[\text { divide by } X] }
\end{aligned}
$$

So, $[0: 1: 0] \mapsto[0: 0: 3]=[0: 0: 1]=(0,0)$ [in the $x y$-plane].
Note that if α_{1}, α_{2} are the roots of $x^{3}+x+1 / 3$, then clearly $\left(\alpha_{i}, 0\right) \mapsto\left(\alpha_{i}, 0\right)$. But we also have $(0,0)$ in the curve given by equation (4) and note that no affine point of the curve given by equation (3) can map to that one [as the map is $(x, y) \mapsto(x, x y)$ and there is no point with x-coordinate 0 in that curve], so it had to be one of the points at infinity that would map to it. Since we knew where the other point had to go, we knew already that $[0: 1: 0] \mapsto(0,0)$.

If we want to go one step further, we can get rid of the term in x^{2} in equation (4). The map is $(x, y) \mapsto(x+1 / 3, y)$ and the new equation is

$$
\begin{equation*}
y^{2}=x^{3}-1 / 27 . \tag{5}
\end{equation*}
$$

Finally if you want to have integral coefficients, we cab get it with the map $(x, y) \mapsto$ $\left(3^{2} x, 3^{3} y\right)$ and new equation

$$
\begin{equation*}
y^{2}=x^{3}-27 . \tag{6}
\end{equation*}
$$

Composing all these maps, we have that the map between the original curve (equation (1)) and the final (equation (6)) is

$$
(x, y) \mapsto\left(\frac{6(x+y+1)}{2-x-y}, \frac{27\left(x^{2}-y^{2}\right)}{(2-x-y)^{2}}\right)
$$

and the reverse maps is

$$
(x, y) \mapsto\left(\frac{(x-3)^{2}+9 y}{(x-3)^{2}+9(x-3)}, \frac{(x-3)^{2}-9 y}{(x-3)^{2}+9(x-3)}\right) .
$$

