Errata 2

Math 652

February 9, 2016

In class we left the following unproven:

Lemma 1. Let A be a finite commutative F-algebra and $e \neq 0$ an idempotent. Then e is a (finite) sum of primitive idempotents.

Thomas showed me a proof at the end of the class, but this is slightly different. (Behind the curtains, it is the same.)
We will use the following lemma proved in class:

Lemma 2. If A is finite commutative F-algebra which is indecomposable, then the only idempotents of A are 1 and 0 .

Proof of Lemma 1. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the set of all primitive idempotents of A. [We've seen that this set must be finite. In fact $n \leq \operatorname{dim}_{F} A$.] Since this is system of orthogonal idempotents associates to the decomposition of A into indecomposable algebras, we have that $1=\sum_{i=1}^{n} e_{i}$, and so $e=\sum_{i=1}^{n} e e_{i}$.
Now, $e e_{i} \in A e_{i}$, which is indecomposable [since e_{i} is primitive] and $e e_{i}$ is idempotent [since e and e_{i} are], so by Lemma 2 above we have that $e e_{i}=0$ or $e e_{i}=1_{A e_{i}}=e_{i}$. Since $e \neq 0$, we must have $e e_{i} \neq 0$ for at least one index i. Assume, without loss of generality that $e e_{i}=e_{i}$ for $i=1, \ldots, m$ and $e e_{i}=0$ for $i=(m+1), \ldots, n$. Then, we have $e=\sum_{i=1}^{n} e e_{i}=\sum_{i=1}^{m} e_{i}$.

