Errata 1

Math 652

February 4, 2016

I made a mistake in class when hurrying to finish the decomposition of finite commutative F-algebras in class today. I've stated that if $\left\{e_{1}, \ldots, e_{r}\right\}$ is the set of all primitive idempotents of A, then $A \cong \prod_{i=1}^{r} A e_{i}$ when trying to prove the uniqueness (up to ordering) of a decomposition of an algebra into indecomposables. This is true, but I hadn't proved it yet. [I was then assuming part of what I wanted to prove.]

Here is the proper proof of the uniqueness:

Theorem. If $A \cong \prod_{i=1}^{r} A_{i}$, with A_{i} indecomposable, and if $\left\{e_{1}, \ldots, e_{r}\right\}$ is the system of orthogonal idempotents associated to this representation, then these are all the primitive idempotents of A. Since $A_{i} \cong A \cdot e_{i}$, all decompositions of A into indecomposable must be the same [namely, $A \cong \prod_{i=1}^{r} A \cdot e_{i}$] up to the order of and isomorphism of the factors.

Proof. Remember we had proved that the e_{i} 's are primitive [since the A_{i} 's are indecomposable]. Also, we have that $\sum_{i=1}^{r} e_{i}=1$ [since they are the system of orthogonal idempotents associated to a representation as direct product]. If there is some e primitive idempotent different from all e_{i} 's, then [by a proposition in class] $e \cdot e_{i}=0$. But then,

$$
e=e \cdot 1=e \cdot \sum_{i=1}^{r} e_{i}=\sum_{i=1}^{r} e \cdot e_{i}=\sum_{i=1}^{r} 0=0
$$

a contradiction. So, $\left\{e_{1}, \ldots, e_{r}\right\}$ is the complete set.

