Extra Notes 1

Math 652

February 15, 2016

Proposition. With the notation from class [on 02/12]:

$$
K[\alpha] e_{i}(\alpha) \cong K[X] / f_{i}(X) \cdot K[X] .
$$

Proof. Let $\phi: K[X] \rightarrow K\left[\alpha_{i}\right] e\left(\alpha_{i}\right)$ defined by $\phi(g) \stackrel{\text { def }}{=} g(\alpha) e_{i}(\alpha)$. Since $e_{i}(\alpha)^{2}=e_{i}(\alpha)$ [idempotent], this map is a homomorphism of rings. [Note also that $1_{K[\alpha] e_{i}(\alpha)}=e_{i}(\alpha)$.] It's also clearly onto. So, suffices to show that $\operatorname{ker} \phi=f_{i}(X) \cdot K[X]$. Remember:

- $g_{i} \stackrel{\text { def }}{=} \prod_{j \neq i} f_{j} ;$
- $\operatorname{since}\left(g_{1}, \ldots, g_{n}\right)=1$ and so there are $h_{i} \in K[X]$ such that $1=\sum_{i} g_{i} h_{i}$;
- $e_{i} \stackrel{\text { def }}{=} g_{i} h_{i}$.

So, $e_{i} f_{i}=\left(f_{i} g_{i}\right) h_{i}=f h_{i}$, and hence $\phi\left(f_{i}\right)=0[$ as $f(\alpha)=0]$, and so $f_{i} \cdot K[X] \subseteq \operatorname{ker} \phi$. But, f_{i} is irreducible [by definition] and hence $f_{i} \cdot K[X]$ is a maximal ideal. If $\operatorname{ker} \phi \neq f_{i} \cdot K[X]$, then it would be all of $K[X]$, but that is not the case as $\phi(1)=e_{i}(\alpha) \neq 0$ [as proved in class].

