Dual Basis for the Trace

Math 652

February 26, 2016

Let L/K be a finite separable extension and $\mathcal{B} = \{x_1, \ldots, x_n\}$ be a K-basis of L. Let $M_{\mathcal{B}} \stackrel{\text{def}}{=} [t_{L/K}(x_i x_j)]$ [with $1 \leq i, j \leq n$]. Then, since $t_{L/K}$ is K-linear, if $x = \sum_i a_i x_i$ and $y = \sum_i b_i x_i$, then

$$\mathbf{t}_{L/K}(xy) = \sum_{i} a_i \, \mathbf{t}_{L/K}(x_i y) = \sum_{i} a_i \left[\sum_{j} b_j \, \mathbf{t}_{L/K}(x_i x_j) \right]$$

Note that

$$\left[\mathbf{t}_{L/K}(x_i x_j)\right] \cdot \begin{bmatrix} b_1\\ \vdots\\ b_n \end{bmatrix} = \begin{bmatrix} \sum_j b_j \mathbf{t}_{L/K}(x_1 x_j)\\ \vdots\\ \sum_j b_j \mathbf{t}_{L/K}(x_n x_j) \end{bmatrix}$$

and hence

$$\mathbf{t}_{L/K}(xy) = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} \cdot \begin{bmatrix} \mathbf{t}_{L/K}(x_i x_j) \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}.$$

Note that $[a_1, \ldots, a_n]$ is just the coordinates of x with respect to the basis \mathcal{B} , usually denoted by $[x]_{\mathcal{B}}$, and that $[b_1, \ldots, b_n] = [y]_{\mathcal{B}}$. So, with a choice of \mathcal{B} as above, we have that

$$\mathbf{t}_{L/K}(xy) = [x]_{\mathcal{B}} \cdot M_{\mathcal{B}} \cdot [y]_{\mathcal{B}}^{\mathrm{T}}.$$

Proposition. There is $\{y_1, \ldots, y_n\} \subseteq L$ such that $t_{L/K}(x_i y_j) = \delta_{ij}$.

Proof. We've seen [see (1.25.b) on pg. 15] that det $M_{\mathcal{B}} \neq 0$, i.e., $M_{\mathcal{B}}$ is invertible. So, if

$$\vec{e}_i \stackrel{\text{def}}{=} [0, \dots, 1, \dots, 0], \quad 1 \text{ in the } i\text{-th coordinate},$$

let

$$\begin{bmatrix} c_{j,1} \\ \vdots \\ c_{j,n} \end{bmatrix} \stackrel{\text{def}}{=} M_{\mathcal{B}}^{-1} \cdot (\vec{e}_j)^{\mathrm{T}}$$

and $y_j \stackrel{\text{def}}{=} \sum_k c_{j,k} x_k$. Thus, we have $[y_j]_{\mathcal{B}}^{\mathrm{T}} = [c_{j,1}, \dots, c_{j,n}]^{\mathrm{T}} = M_{\mathcal{B}}^{-1}(\vec{e}_j)^{\mathrm{T}}$. Then,

$$\mathbf{t}_{L/K}(x_i y_j) = [x_i]_{\mathcal{B}} \cdot M_{\mathcal{B}} \cdot [y_j]_{\mathcal{B}}^{\mathrm{T}} = \vec{e}_i \cdot M_{\mathcal{B}} \cdot (M_{\mathcal{B}}^{-1} \cdot (\vec{e}_j)^{\mathrm{T}}) = \vec{e}_i \cdot (\vec{e}_j)^{\mathrm{T}} = \delta_{ij}.$$