Dual Basis for the Trace

Math 652

February 26, 2016

Let L / K be a finite separable extension and $\mathcal{B}=\left\{x_{1}, \ldots, x_{n}\right\}$ be a K-basis of L. Let $M_{\mathcal{B}} \stackrel{\text { def }}{=}\left[\mathrm{t}_{L / K}\left(x_{i} x_{j}\right)\right][$ with $1 \leq i, j \leq n]$. Then, since $\mathrm{t}_{L / K}$ is K-linear, if $x=\sum_{i} a_{i} x_{i}$ and $y=\sum_{i} b_{i} x_{i}$, then

$$
\mathrm{t}_{L / K}(x y)=\sum_{i} a_{i} \mathrm{t}_{L / K}\left(x_{i} y\right)=\sum_{i} a_{i}\left[\sum_{j} b_{j} \mathrm{t}_{L / K}\left(x_{i} x_{j}\right)\right] .
$$

Note that

$$
\left[\mathrm{t}_{L / K}\left(x_{i} x_{j}\right)\right] \cdot\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]=\left[\begin{array}{c}
\sum_{j} b_{j} \mathrm{t}_{L / K}\left(x_{1} x_{j}\right) \\
\vdots \\
\sum_{j} b_{j} \mathrm{t}_{L / K}\left(x_{n} x_{j}\right)
\end{array}\right]
$$

and hence

$$
\mathrm{t}_{L / K}(x y)=\left[\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right] \cdot\left[\mathrm{t}_{L / K}\left(x_{i} x_{j}\right)\right] \cdot\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right] .
$$

Note that $\left[a_{1}, \ldots, a_{n}\right]$ is just the coordinates of x with respect to the basis \mathcal{B}, usually denoted by $[x]_{\mathcal{B}}$, and that $\left[b_{1}, \ldots, b_{n}\right]=[y]_{\mathcal{B}}$. So, with a choice of \mathcal{B} as above, we have that

$$
\mathrm{t}_{L / K}(x y)=[x]_{\mathcal{B}} \cdot M_{\mathcal{B}} \cdot[y]_{\mathfrak{B}}^{\mathrm{T}} .
$$

Proposition. There is $\left\{y_{1}, \ldots, y_{n}\right\} \subseteq L$ such that $\mathrm{t}_{L / K}\left(x_{i} y_{j}\right)=\delta_{i j}$.
Proof. We've seen [see (1.25.b) on pg. 15] that $\operatorname{det} M_{\mathcal{B}} \neq 0$, i.e., $M_{\mathcal{B}}$ is invertible. So, if

$$
\vec{e}_{i} \stackrel{\text { def }}{=}[0, \ldots, 1, \ldots, 0], \quad 1 \text { in the } i \text {-th coordinate, }
$$

let

$$
\left[\begin{array}{c}
c_{j, 1} \\
\vdots \\
c_{j, n}
\end{array}\right] \stackrel{\text { def }}{=} M_{\mathcal{B}}^{-1} \cdot\left(\vec{e}_{j}\right)^{\mathrm{T}}
$$

and $y_{j} \stackrel{\text { def }}{=} \sum_{k} c_{j, k} x_{k}$. Thus, we have $\left[y_{j}\right]_{\mathcal{B}}^{\mathrm{T}}=\left[c_{j, 1}, \ldots, c_{j, n}\right]^{\mathrm{T}}=M_{\mathcal{B}}^{-1}\left(\vec{e}_{j}\right)^{\mathrm{T}}$.
Then,

$$
\mathrm{t}_{L / K}\left(x_{i} y_{j}\right)=\left[x_{i}\right]_{\mathcal{B}} \cdot M_{\mathcal{B}} \cdot\left[y_{j}\right]_{\mathcal{B}}^{\mathrm{T}}=\vec{e}_{i} \cdot M_{\mathcal{B}} \cdot\left(M_{\mathcal{B}}^{-1} \cdot\left(\vec{e}_{j}\right)^{\mathrm{T}}\right)=\vec{e}_{i} \cdot\left(\vec{e}_{j}\right)^{\mathrm{T}}=\delta_{i j}
$$

