1) Remainders:
(a) [5 points] Find the remainder of 2^{87} when divided by 7 .

Solution. We have that $87=3+5 \cdot 7^{1}+1 \cdot 7^{2}$ and $3+5+1=9=2+1 \cdot 7$. So,

$$
2^{87} \equiv 2^{3+5+1}=2^{9} \equiv 2^{2+1}=2^{3}=8 \equiv 1 \quad(\bmod 7)
$$

(b) [5 points] Find the remainder of $47300272^{63745765}$ when divided by 3.

Solution. We have that

$$
47300272 \equiv 4+7+3+0+0+2+7+2 \equiv 1+1+2+1+2 \equiv 1 \quad(\bmod 3)
$$

So,

$$
47300272^{63745765} \equiv 1^{63745765} \equiv 1 \quad(\bmod 3)
$$

2) $[10$ points] Let $a, b, c \in \mathbb{Z} \backslash\{0\}$ and $d=\operatorname{gcd}(a, b)$. Prove that $\operatorname{gcd}(a, b, c)=\operatorname{gcd}(d, c)$.
[Hint: Prove first that n is a common divisor of a, b and c iff it is a common divisor of d and c.]

Proof. Suppose $n \mid a, b, c$. In particular, $n \mid a, b$ and hence [by a result seen in class, immediate consequence of Bezout's Theorem] $n \mid d$. Also, clearly $n \mid c$, so $n \mid d, c$.
Now if $n \mid d, c$, then $n \mid d$. Since $d \mid a, b$, we also have that $n \mid a, b$. Therefore $n \mid a, b, c$. So,

$$
\{n \in \mathbb{Z}: n \mid a, b, c\}=\{n \in \mathbb{Z}: n \mid d, c\}=\operatorname{gcd} d, c,
$$

and so

$$
\operatorname{gcd}(a, b, c)=\max \{n \in \mathbb{Z}: n \mid a, b, c\}=\max \{n \in \mathbb{Z}: n \mid d, c\}=\operatorname{gcd} d, c
$$

3) [10 points] Find all $x \in \mathbb{Z}$ satisfying [simultaneously]:

$$
\begin{aligned}
3 x & \equiv 1 \quad(\bmod 7) \\
x \equiv 4 & (\bmod 11) .
\end{aligned}
$$

If there is no such x, simply justify why.
Solution. The second equation gives us that $x=11 k+4$, for $k \in \mathbb{Z}$. Replacing in the first we get

$$
33 k+12 \equiv 1 \quad(\bmod 7)
$$

i.e.,

$$
5 k \equiv-11 \equiv 3 \quad(\bmod 7)
$$

Since $3 \cdot 5=15 \equiv 1(\bmod 7)$, multiplying by 3 we get

$$
k \equiv 9 \equiv 2 \quad(\bmod 7)
$$

So, $k=7 l+2$. Replacing in the original equation we get $x=77 l+26$, for $l \in \mathbb{Z}$.
4) [10 points] Let F be a field and $f, g, h \in F[x]$ with $f \mid g$. Prove that $f \mid(g+h)$ iff $f \mid h$. [Note: This is simply the Basic Lemma for polynomials.]

Proof. Let $g=q \cdot f$.
Assume that $f \mid(g+h)$. Then, $(g+h)=q^{\prime} \cdot f$. So,

$$
h=q^{\prime} \cdot f-g=q^{\prime} \cdot f-q \cdot f=\left(q^{\prime}-q\right) \cdot f .
$$

Since $\left(q^{\prime}-q\right) \in F[x]$, we have that $f \mid h$.
Now, assume that $f \mid h$. Then, $h=q^{\prime \prime} \cdot f$. But then,

$$
(g+h)=q \cdot f+q^{\prime \prime} \cdot f=\left(q+q^{\prime \prime}\right) \cdot f
$$

Since $\left(q+q^{\prime \prime}\right) \in F[x]$, we have that $f \mid(g+h)$.
5) Examples:
(a) [5 points] Give an example of an infinite field F such that $6 \cdot a=0$ for all $a \in F$. [Hint: Can you find a finite example first?]

Solution. $\mathbb{F}_{2}(x)\left[\right.$ or $\left.\mathbb{F}_{3}(x)\right]$.
(b) [5 points] Give an example of a ring R that contains $\mathbb{C}[x]$ as a proper subring [i.e., $\mathbb{C}[x] \subseteq R, \mathbb{C}[x]$ a subring of R, but $\mathbb{C}[x] \neq R]$.

Solution. $\mathbb{C}[x, y]$ or $\mathbb{C}(x)$.
6) Determine if the polynomials below are irreducible or not in the corresponding polynomial ring. Justify each answer!
(a) [4 points] $f=x^{2}-\sqrt{7} x+2$ in $\mathbb{R}[x]$.

Solution. We have $\Delta=(-\sqrt{7})^{2}-4 \cdot 1 \cdot 2=-1<0$. So, the polynomial has no root in \mathbb{R}. Since the degree is 2 , it is irreducible.
(b) [4 points] $f=x^{7}+\mathrm{e} x^{5}-\pi x^{2}+\sqrt{5} x+\log (2)$ in $\mathbb{C}[x]$.

Solution. Since every non-constant polynomial with coefficients in \mathbb{C} has a root in \mathbb{C}, f has a root. Since $\operatorname{deg}(f)>1$, it is reducible.
(c) [4 points] $f=\overline{211} x-\overline{301}$ in $\mathbb{F}_{521}[x]$.

Solution. The polynomials has degree one, so it is irreducible.
(d) [4 points] $f=x^{7}+4 x^{6}-8 x^{4}+120 x^{3}-2 x+14$ in $\mathbb{Q}[x]$.

Solution. Irreducible by Eisenstein's Criterion for $p=2$.
(e) [5 points] $f=4 x^{3}+3 x^{2}-34 x+3001$ in $\mathbb{Q}[x]$.

Solution. Reducing modulo 3 we get $\bar{f}=x^{3}-x+\overline{1}$. Now, $\bar{f}(\overline{0})=\bar{f}(\overline{1})=\bar{f}(\overline{2})=1$. So, \bar{f} has no roots in \mathbb{F}_{3}, and since $\operatorname{deg}(\bar{f})=3$, it is irreducible. So, f is also irreducible.
(f) [4 points] $f=x^{6}-2 x^{5}+x^{4}-3 x^{2}+x+2$ in $\mathbb{Q}[x]$.

Solution. Using the Rational Root Test we see that 1 is a root. Since $\operatorname{deg}(f)>1$, it is reducible.
7) Let $\sigma, \tau \in S_{9}$ be given by

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
7 & 1 & 5 & 4 & 3 & 9 & 2 & 8 & 6
\end{array}\right) \quad \text { and } \quad \tau=\left(\begin{array}{llllll}
1 & 3 & 8
\end{array}\right)\left(\begin{array}{lllll}
2 & 4 & 5 & 9
\end{array}\right)
$$

(a) [5 points] Write the complete factorization of σ into disjoint cycles.

Solution.

$$
\sigma=(172)(35)(4)(69)(8)
$$

(b) [4 points] Compute σ^{-1}. [Your answer can be in any form.]

Solution.

$$
\sigma^{-1}=\left(\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
2 & 7 & 5 & 4 & 3 & 9 & 1 & 8 & 6
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 7
\end{array}\right)(35)(4)(69)(8)
$$

(c) [4 points] Compute $\tau \sigma$. [Your answer can be in any form.]

Solution.

$$
\tau \sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
7 & 3 & 9 & 5 & 8 & 2 & 4 & 1 & 6
\end{array}\right)=\left(\begin{array}{llllll}
174 & 4
\end{array}\right)\left(\begin{array}{llll}
2 & 3 & 9 & 6
\end{array}\right) .
$$

(d) [4 points] Compute $\sigma \tau \sigma^{-1}$. [Your answer can be in any form.]

Solution.

$$
\sigma \tau \sigma^{-1}=(758)(1436)
$$

(e) [4 points] Write τ as a product of transpositions.

Solution.

$$
\tau=(18)(13)(29)(25)(24)
$$

(f) [4 points] Compute $\operatorname{sign}(\tau)$.

Solution. $\operatorname{sign}(\tau)=(-1)^{5}=-1$ or $\operatorname{sign}(\tau)=(1)^{9-4}=-1$.

