
1) Congruences:

(a) Find all x ∈ Z such that
4x ≡ 10 (mod 30).

If there is no such x, simply justify why.

Solution. We have that (4, 30) = 2 | 10 and hence there are solutions and they are the
solutions of

2x ≡ 5 (mod 15)

Since 1 = 8 · 2 + (−1) · 15, we multiply by 8, getting

x ≡ 8 · 5 = 40 ≡ 10 (mod 15).

So, the solutions are x = 10 + 15k for k ∈ Z.

(b) Find all x ∈ Z satisfying [simultaneously]:

x ≡ 2 (mod 7),

x ≡ 3 (mod 11).

If there is no such x, simply justify why.

Solution. Since (7, 11) = 1, there are solutions. The first equation gives us that x =
2 + 7k, for k ∈ Z. Substituting in the second equation we get

7k ≡ 1 (mod 11).

Since 1 = (−3) · 7 + 2 · 11, we multiply by −3 and get

k ≡ −3 ≡ 8 (mod 11).

So, k = 8 + 11l for l ∈ Z and therefore x = 2 + 7 · (8 + 11l) = 58 + 77l for l ∈ Z.
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2) Let R be a non-commutative ring and a ∈ R such that there are b, c ∈ R such that ba = 1
and ac = 1. Prove that b = c. Justify each step!

Proof. [This was done in the Errata 1.] We have

b = b · 1 [property of 1]

= b · (ac) [assumption that ac = 1]

= (ba) · c [associativity]

= 1 · c [assumption that ba = 1]

= c [property of 1]

3) Examples:

(a) [10 points] Give an example of an infinite field F such that 6 · a = 0 for all a ∈ F .
[Hint: Can you find a finite example first?]

Solution. Note that I6 or I6[x] do not work, since I6 is not a domain. But, in F2 = I2,
we have that 2 · a = 0 for all a ∈ F2, and hence 6a = 3 · (2a) = 3 · 0 = 0 for all a ∈ F2.
[F3 would also work.] But, F2 is finite. To make it infinite, we could take F2[x]. [Note
that in there also every element multiplied by 2 is zero, since it makes all coefficients
zero.] But it is not a field. So, we could take F2(x) [the field of rational functions with
coefficients in F2]. Since F2[x] ⊆ F2(x), it is clearly infinite.

[Another example would be F3(x).]

(b) [10 points] Give an example of a ring R that contains C[x] as a proper subring [i.e.,
C[x] ⊆ R, C[x] a subring of R, but C[x] 6= R].

Solution. One example [and probably the simplest] would be (C[x])[y] = C[x, y] [ring
of polynomial in two variables, x and y].

Other examples would be C(x) or C[[x]] [the ring of power series], although the latter
I’ve only mentioned it briefly.
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4) Prove that

R = {f ∈ Z[x] : f = a + x2f1 for some a ∈ Z and f1 ∈ Z[x]}

is a domain.

Proof. Since Z is a domain, we have that Z[x] is a domain. So, it suffices to show that R is
a subring of Z[x] [as subrings of domains are automatically domains].

Since 1 = 1 + x2 · 0, and 1 ∈ Z and 0 ∈ Z[x], we have that 1 ∈ R.

Let now f, g ∈ R. Then, there are a, b ∈ Z and f1, g1 ∈ Z[x] such that f = a + x2 · f1 and
g = b + x2 · g1.

Then, f − g = (a − b) + x2(f1 − f2). Since (a − b) ∈ Z and (f1 − f2) ∈ Z[x], we have that
(f − g) ∈ R.

Also,

f · g = (a + x2f1)(b + x2g1)

= ab + x2(ag1) + x2(bf1) + x4f1g1

= ab + x2(bf1 + ag1 + x2f1g1).

Since ab ∈ Z and (bf1 + ag1 + x2f1g1) ∈ Z[x], we have that f · g ∈ R.

Hence, R is a subring of Z[x] and thus a domain.
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5) Let R be a commutative ring [but not necessarily a domain] and let f, g ∈ R[x] \ {0},
with deg(f) = deg(g) and f | g.

(a) Prove that if R is a domain, then there is a ∈ R such that g = a · f .

Proof. Since f | g, there is h ∈ R[x] such that g = f · h [by definition of “divides”].
Since R is a domain, we then have that

deg(g) = deg(f · h) = deg(f) + deg(h) = deg(g) + deg(h).

So, deg(h) = 0 and hence h = a ∈ R \ {0} and g = a · f .

(b) Prove that in I6[x], if f = 2̄x + 1̄ and g = 5̄x + 1̄, then f | g. [So, the statement does
not hold for non-domains, as clearly g is not a multiple of f ].

Proof. We have that

(2̄x + 1̄)(3̄x + 1̄) = 6̄x2 + 5̄x + 1̄ = 5̄x + 1̄.

Hence, g = f · (3̄x + 1̄), and so f | g.
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