1) [20 points] Use the Extended Euclidean Algorithm to write the GCD of 210 and 77 as a linear combination of themselves. Show the computations explicitly! [Hint: You should get 7 for the GCD!]

Solution. We have:

$$
\begin{aligned}
210 & =77 \cdot 2+56 \\
77 & =56 \cdot 1+21 \\
56 & =21 \cdot 2+14 \\
21 & =14 \cdot 1+7 \\
14 & =7 \cdot 2+0
\end{aligned}
$$

Now:

$$
\begin{aligned}
7 & =21-14=21-(56-2 \cdot 21) \\
& =3 \cdot 21-56=3 \cdot(77-56)-56 \\
& =3 \cdot 77-4 \cdot 56=3 \cdot 77-4 \cdot(210-2 \cdot 77) \\
& =11 \cdot 77-4 \cdot 210
\end{aligned}
$$

2) $[10$ points $]$ Let

$$
\begin{aligned}
m & =2^{a} \cdot 3^{5} \cdot 5^{b} \cdot 7 \\
n & =3^{c} \cdot 5 \cdot 7^{d}
\end{aligned}
$$

where $a, b, c, d \in \mathbb{Z}_{\geq 0}$. If $(m, n)=3^{2} \cdot 7$ and $[m, n]=2 \cdot 3^{5} \cdot 5 \cdot 7^{3}$, then find a, b, c and d. [Justify!]

Solution. We have:

$$
(m, n)=2^{\min \{a, 0\}} \cdot 3^{\min \{5, c\}} \cdot 5^{\min \{b, 1\}} \cdot 7^{\min \{1, d\}}=2^{0} \cdot 3^{2} \cdot 5^{0} \cdot 7^{1}
$$

By unique factorization, we get:

$$
\begin{aligned}
\min \{a, 0\} & =0 \\
\min \{5, c\} & =2, \text { and hence } c=2 \\
\min \{b, 1\} & =0, \text { and hence } b=0 \\
\min \{1, d\} & =1
\end{aligned}
$$

Similarly, We have:

$$
[m, n]=2^{\max \{a, 0\}} \cdot 3^{\max \{5, c\}} \cdot 5^{\max \{b, 1\}} \cdot 7^{\max \{1, d\}}=2^{1} \cdot 3^{5} \cdot 5^{1} \cdot 7^{3} .
$$

By unique factorization, we get:

$$
\begin{aligned}
\max \{a, 0\} & =1, \text { and hence } a=1, \\
\max \{5, c\} & =5,[\text { OK, since } c=2], \\
\max \{b, 1\} & =1,[\text { OK, since } b=0], \\
\max \{1, d\} & =3, \text { and hence } d=3 .
\end{aligned}
$$

So, $a=1, b=0, c=2, d=3$.
3) [10 points] Express 327 in base 5. Show the computations explicitly!

Solution. We have:

$$
\begin{aligned}
327 & =65 \cdot 5+2 \\
65 & =13 \cdot 5+0 \\
13 & =2 \cdot 5+3 \\
2 & =0 \cdot 5+2
\end{aligned}
$$

Hence,

$$
327=2+0 \cdot 5+3 \cdot 5^{2}+2 \cdot 5^{3}
$$

4) $[20$ points $]$ If

$$
n \stackrel{\text { def }}{=} 3601292 \cdot(126517)^{5784683745}-72342003
$$

then what is its remainder when divided by 3? [Justify! Correct answer with no explanation is worth 0.]

Solution. We have:

$$
\begin{aligned}
3601292 & \equiv 3+6+0+1+2+9+2 \equiv 1+2+2 \equiv 2 \quad(\bmod 3) \\
126517 & \equiv 1+2+6+5+1+7 \equiv 22 \equiv 1 \quad(\bmod 3) \\
72342003 & \equiv 7+2+3+4+2+0+0+3 \equiv 21 \equiv 0 \quad(\bmod 3)
\end{aligned}
$$

So,

$$
n \equiv 2 \cdot 1^{5784683745}-0=2 \quad(\bmod 3)
$$

Hence, the remainder is 2 .
5) [20 points] Let

$$
n \stackrel{\text { def }}{=} 13004385024102127
$$

Find the remainders of n when divided by 2, 4, 5, 9 and 10,000. [Justify! Correct answer with no explanation is worth 0.]

Solution. By 2: since it is odd [last digit odd], the remainder is 1.
By 4: we can look at the last two digits, so $n \equiv 27 \equiv 3(\bmod 4)$, and hence the remainder is 3 .

By 5: it is congruent to the last digit modulo 5 , so $n \equiv 7 \equiv 2(\bmod 5)$, and hence the remainder is 2 .

By 9: we have $n \equiv 1+3+0+0+4+3+8+5+0+2+4+1+0+2+1+2+7=43 \equiv 4+3=7$ $(\bmod 9)$. So, the remainder is 7 .

By 10,000: it's just the last 4 digits, so the remainder is 2127 .
6) [20 points] For both parts below, let $a \in \mathbb{Z}$ and $m \in \mathbb{Z}_{\geq 2}$ with (a, m) $=1$.
(a) Prove that there is $r \in \mathbb{Z}$ such that $a \cdot r \equiv 1(\bmod m)$. [Hint: You have to use the fact that $(a, m)=1$.]

Proof. By Bezout's Theorem, there are $r, s \in \mathbb{Z}$ such that

$$
a r+m s=1, \quad \text { i.e., } a r-1=m(-s) .
$$

Thus, $m \mid(a r-1)$ and hence, by definition, $a r \equiv 1(\bmod m)$.
(b) Given $b \in \mathbb{Z}$, prove that there is $x \in \mathbb{Z}$ such that $a \cdot x \equiv b(\bmod m)$. [You can use the previous part here, even if you could not do it!]

Proof. Let r as in part (a), so that $a r \equiv 1(\bmod m)$, and let $x \stackrel{\text { def }}{=} b r$. Then, we have:

$$
a x=a \cdot(b r)=b \cdot(a r) \equiv b \cdot 1 \equiv b \quad(\bmod m)
$$

Hence, we can take $x=b r$.

