Errata 1

Math 351

March 24, 2016

Here is our definition of unit of a not [necessarily commutative] ring:
Definition. An element a in a ring R is a unit if there exists $b \in R$ such that $a b=b a=1$.
When defining it in class, I've made a comment that it suffices to ask that $a b=1$, and we would get that $b a=1$ also. This is incorrect! It does work in the context of groups, but not rings in general.
Here is something that we do have:
Proposition. Let R be a ring and $a \in R$ such that there are $b, c \in R$ such that $a b=c a=1$. [So, b is a "left inverse" and c is a "right inverse".] Then, $b=c$. [So, if a has both a right and left inverses, these must be the same.]

Proof. This is simple. We have:

$$
b=1 \cdot b=(c a) \cdot b=c \cdot(a b)=c \cdot 1=c .
$$

Here is the result that actually works [and lead to my mistake]:
Proposition. Let $R \neq\{0\}$ be a ring such that for every $a \in R \backslash\{0\}$ there is $b \in R$ such that $b a=1$. [I.e., every element has a left inverse.] Then, $a b=1$. [I.e., the left inverse is also a right inverse.]

Proof. First, observe that $a b \neq 0$, as otherwise we would get that

$$
0=b \cdot 0=b(a b)=(b a) b=1 \cdot b=b
$$

But then, $1=b a=0 \cdot a=0$, a contradiction since $R \neq\{0\}$. Hence, $a b \neq 0$.

Now, since $a b \neq 0$, we have it has a left inverse [by hypothesis]. Let then c be a left inverse of $a b$. Then, $c(a b)=c a b=1$ and hence $c a b a=a$. But, since $b a=1$, we get $c a=c a \cdot 1=c a b a=a$. But then, $a b=c a b=1$. [The first equality follows from $a=c a$ and the second from $c a b=1$.]

But, indeed, a [non-commutative] ring can have a left inverse which is not a right inverse:
Example: Let

$$
S \stackrel{\text { def }}{=}\left\{\left\{a_{i}\right\}=\left(a_{0}, a_{1}, a_{2}, \ldots\right): a_{i} \in \mathbb{R}\right\}
$$

i.e., the set of real sequences. Define:

$$
\left(a_{0}, a_{1}, \ldots\right)+\left(b_{0}, b_{1}, \ldots\right) \stackrel{\text { def }}{=}\left(a_{0}+b_{0}, a_{1}+b_{1}, \ldots\right)
$$

[I.e., we add two sequences by adding the corresponding terms.]
Now, let

$$
R \xlongequal{\text { def }}\{f \mid f: S \rightarrow S\}
$$

[i.e., the set of all functions from S to S]. To make R into a ring we need two operations. Define $f+g$ in the usual way:

$$
(f+g)\left(\left\{a_{i}\right\}\right) \stackrel{\text { def }}{=} f\left(\left\{a_{i}\right\}\right)+g\left(\left\{a_{i}\right\}\right)
$$

For the product, though, we will use composition of functions [and not multiplication of sequences by multiplying the corresponding entries, and so R is not the $\operatorname{ring} \mathcal{F}(S, S)$ that I previously defined in class!]. Thus,

$$
(f \cdot g)\left(\left\{a_{i}\right\}\right) \stackrel{\text { def }}{=}(f \circ g)\left(\left\{a_{i}\right\}\right)=f\left(g\left(\left\{a_{i}\right\}\right)\right)
$$

Check that these operation do make R into a [non-commutative] ring [with 1]. [Note that 0_{R} is the function that takes every sequence to $(0,0,0, \ldots)$ and 1_{R} is the identity function [that takes every sequence to itself].]
Let now $f \in R$ be defined by:

$$
f\left(\left(a_{0}, a_{1}, a_{2}, \ldots\right)\right) \stackrel{\text { def }}{=}\left(0, a_{0}, a_{1}, a_{2}, \ldots\right)
$$

[i.e., f adds a 0 to the first entry and shifts the rest up] and $g \in R$ be defined by:

$$
g\left(\left(a_{0}, a_{1}, a_{2}, \ldots\right)\right) \stackrel{\text { def }}{=}\left(a_{1}, a_{2}, a_{3}, \ldots\right)
$$

[i.e., g removes the first entry, shifting the rest down]. Then,

$$
(g \cdot f)\left(\left(a_{0}, a_{1}, a_{2}, \ldots\right)\right)=g\left(f\left(\left(a_{0}, a_{1}, a_{2}, \ldots\right)\right)\right)=g\left(\left(0, a_{0}, a_{1}, a_{2}, \ldots\right)=\left(a_{0}, a_{1}, a_{2}, \ldots\right),\right.
$$

i.e., $g \cdot f=1_{R}$.

But,
$(f \cdot g)((1,0,0,0, \ldots))=f(g(1,0,0,0, \ldots))=f((0,0,0, \ldots))=(0,0,0,0, \ldots) \neq(1,0,0,0, \ldots)$,
and hence $f \cdot g \neq 1_{R}$. So, g is a left inverse of f in R, but not a right inverse [and f is a ring inverse of g, but not a left inverse].

