1. [August 2007 Prelim, Part 4, Question 1] Let $f \in \mathbb{Q}[x]$, monic, irreducible of the degree d. Suppose that the Galois group of f is Abelian of order 360. What are the possible values of d ?

Proof. [Note that the Galois group of f is simply the Galois group of the splitting field of f.] Let K be the splitting field of f [over $\mathbb{Q}]$. Let $\alpha \in K$ be a root of f and let $F \stackrel{\text { def }}{=} \mathbb{Q}[\alpha]$. Then, $F \subseteq K$ and f is the minimal polynomial of α over \mathbb{Q} [as it is monic, irreducible and $f(\alpha)=0]$. Thus $[F: \mathbb{Q}]=d$.

But since K / \mathbb{Q} is Abelian, so is F / \mathbb{Q} [as seen in class]. In particular, F / \mathbb{Q} is normal, and since f is irreducible with a root in F, we must have that f splits in F. Thus, $K=F=\mathbb{Q}[\alpha]$, and $d=\operatorname{deg}(f)=[\mathbb{Q}[\alpha]: \mathbb{Q}]=|\operatorname{Gal}(\mathbb{Q}[\alpha] / \mathbb{Q})|=360$. [I.e., $d=360$ is the only possibility.]
2. [A question that was asked in class by Thomas] Consider the field extensions:

If K_{1} / F is Galois, then so is $K_{1} K_{2} / K_{2}$, with isomorphic Galois groups. This implies [by the Fundamental Theorem of Galois Theory] that there is a 1-to-1 and onto correspondence between intermediate fields of K_{1} / F and $K_{1} K_{2} / K_{2}$. Is it the case that this holds even if K_{1} / F is not Galois?

Answer. Separable Extensions: Yes.

Let L_{1} be the normal closure of K_{1} / F. [Hence, L_{1} / F is Galois.] So, we have:

Since Galois extensions are distinguished, we have that $L_{1} K_{2} / K_{2}$ is Galois. By Natural Irrationalities, we have that $\operatorname{Gal}\left(L_{1} K_{2} / K_{2}\right) \cong \operatorname{Gal}\left(L_{1} / F\right)$, via the map $\Phi:\left.\sigma \mapsto \sigma\right|_{L_{1}}$. Then, clearly, if $\sigma \in \operatorname{Gal}\left(L_{1} K_{2} / K_{1} K_{2}\right)$, we have that $\left.\left(\left.\sigma\right|_{L_{1}}\right)\right|_{K_{1}}=\operatorname{id}_{K_{1}}$, and hence $\Phi(\sigma)=\left.\sigma\right|_{L_{1}} \in \operatorname{Gal}\left(L_{1} / K_{1}\right)$.

Conversely, if $\sigma \in \operatorname{Gal}\left(L_{1} / K_{1}\right)$, then there is $\tilde{\sigma} \in \operatorname{Gal}\left(L_{1} K_{2} / K_{2}\right)$ such that $\Phi(\tilde{\sigma})=\sigma$. But, then $\tilde{\sigma}$ fixes both $K_{1}\left[\right.$ as $\left.\tilde{\sigma}\right|_{K_{1}}=\left.\left(\tilde{\sigma}_{L_{1}}\right)\right|_{K_{1}}=\left.\sigma\right|_{K_{1}}=\operatorname{id}_{K_{1}}$, as $\left.\sigma \in \operatorname{Gal}\left(L_{1} / K_{1}\right)\right]$ and $K_{2}\left[\operatorname{as} \tilde{\sigma} \in \operatorname{Gal}\left(L_{1} K_{2} / K_{2}\right)\right]$, and hence $\tilde{\sigma} \in \operatorname{Gal}\left(L_{1} K_{2} / K_{1} K_{2}\right)$.

Therefore, Φ induces an isomorphism between $\operatorname{Gal}\left(L_{1} K_{2} / K_{1} K_{2}\right)$ and $\operatorname{Gal}\left(L_{1} / K_{1}\right)$. So, the intermediate extensions between K_{1} / F correspond to subgroups of $\operatorname{Gal}\left(L_{1} / F\right)$ containing $\operatorname{Gal}\left(L_{1} / K_{1}\right)$, while the intermediate extensions between $L_{1} K_{2} / K_{2}$ correspond to subgroups of $\operatorname{Gal}\left(L_{1} K_{2} / K_{2}\right)$ containing $\operatorname{Gal}\left(L_{1} K_{2} / K_{1} K_{2}\right)$, and Φ gives us a bijection between these.
[More explicitly: if $F \subseteq E \subseteq K_{1}$, then let $H=\operatorname{Gal}\left(L_{1} / E\right)$ and E corresponds to $\left(L_{1} K_{2}\right)^{\Phi^{-1}(H)}$, an intermediate extension of $L_{1} K_{2} / K_{2}$.]

Inseparable Extensions: No. [Thanks to S. Mulay!]
Consider $F=\mathbb{F}_{p}\left(x^{p}+y^{p}, x^{p} y^{p}\right), K_{1}=\mathbb{F}_{p}(x+y, x y), K_{2}=\mathbb{F}_{p}\left(x^{p}, y\right)$, where x and y are algebraically independent transcendental elements [i.e., variables].

We have that $K_{1} \cap K_{2}=F$: we have that the map σ which switches x and y is an automorphism of $\mathbb{F}_{p}(x, y)$ that fixes $K_{1}[$ and $F]$. [In fact $\left.\mathbb{F}_{p}(x+y, x y)=\mathbb{F}_{p}(x, y)^{\langle\sigma\rangle}\right]$ So, if $f \in K_{1}$ it must be symmetric in x and y. But, if also $f \in K_{2}$, this means that all powers of x and of y must be multiples of p, i.e., $f \in \mathbb{F}_{p}\left(x^{p}, y^{p}\right)$. So, $f \in$ $\mathbb{F}_{p}\left(x^{p}, y^{p}\right) \cap \mathbb{F}_{p}(x+y, x y)=\mathbb{F}_{p}\left(x^{p}+y^{p}, x^{p} y^{p}\right)$ [by the symmetry in x and $\left.y\right]$.

Clearly, $K_{1} K_{2}=\mathbb{F}_{p}(x, y)$. So, we have:

So, since $\left[K_{1} K_{2}: K_{2}\right]=p$, there are no proper intermediate extensions between $K_{1} K_{2}$ and K_{2}. On the other hand, there are infinitely many intermediate extensions between K_{1} and $F=K_{1} \cap K_{2}$, as K_{1} / F has no primitive element: if $f \in K_{1}$, then $f^{p} \in F$, but $\left[K_{1}: F\right]=p^{2}$. [Note that $u \stackrel{\text { def }}{=} x+y$ and $v \stackrel{\text { def }}{=} x y$ are algebraically independent over $\mathbb{F}_{p}!$]
[Note: K_{1} / F is purely transcendental, so my comment in class that it worked for purely transcendental was mistaken.]

Transcendental [i.e., non-algebraic] Extensions: No.

Let $K_{1}=\mathbb{Q}(x), K_{2}=\mathbb{Q}(x+y, x y)$. As above, if $f \in K_{2}$, then it is symmetric in x and y. If also $f \in K_{1}$, as it has no y 's, it has no x 's. So, $K_{1} \cap K_{2}=\mathbb{Q}$. Also, $K_{1} K_{2}=\mathbb{Q}(x, y)$. So, we have:

Now, K_{1} / \mathbb{Q} has infinitely many intermediate extensions [e.g., $\mathbb{Q}\left(x^{n}\right)$ for $\left.n \in\{2,3,4, \ldots\}\right]$, but $\left[K_{1} K_{2}: K_{2}\right]=2\left[\right.$ as $K_{1} K_{2}=K_{2}(x) \supsetneq K_{2}$ and x is a root of $T^{2}-(x+y) T+(x y) \in$ $\left.K_{2}[T]\right]$, so there are no proper intermediate extensions between $K_{1} K_{2}$ and K_{2}.

