1) Let R be a commutative ring [with $1 \neq 0$] and let

$$
S=\left\{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]: a, b \in R\right\}
$$

[So, diagonal 2×2 matrices with entries in R.]
(a) Prove that S is a ring.
(b) Prove that R is not a domain.

Proof. First, note that $S \subseteq M_{2}(R)$ [where $M_{2}(R)$ is the set of 2×2 matrices with entries in R]. So, suffices to show that S is a subring of $M_{2}(R)$.
We have $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \in S\left[\right.$ and I is the 1 of $\left.M_{2}(R)\right]$. Also, if $\left[\begin{array}{cc}a_{1} & 0 \\ 0 & b_{1}\end{array}\right],\left[\begin{array}{cc}a_{2} & 0 \\ 0 & b_{2}\end{array}\right] \in S$, then

$$
\left[\begin{array}{cc}
a_{1} & 0 \\
0 & b_{1}
\end{array}\right]-\left[\begin{array}{cc}
a_{2} & 0 \\
0 & b_{2}
\end{array}\right]=\left[\begin{array}{cc}
a_{1}-a_{2} & 0 \\
0 & b_{1}-b_{2}
\end{array}\right] \in S
$$

and

$$
\left[\begin{array}{cc}
a_{1} & 0 \\
0 & b_{1}
\end{array}\right] \cdot\left[\begin{array}{cc}
a_{2} & 0 \\
0 & b_{2}
\end{array}\right]=\left[\begin{array}{cc}
a_{1} a_{2} & 0 \\
0 & b_{1} b_{2}
\end{array}\right] \in S
$$

Hence, S is a subring of $M_{2}(R)$.
Note that $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right] \in S \backslash\{0\}$ but

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \cdot\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=0
$$

So, S is not a domain.
2) Is \mathbb{C} the field of fractions of \mathbb{R} ? [Justify your answer!]

Solution. No! Since \mathbb{R} is already a field, we have that its field of fraction is itself. [Or, i is not a quotient of two real numbers, as these quotients are real, and i is not.]
3) Prove that if R is a domain, then $U(R[x])=U(R)$. [Remember, $U(R)$ is the set of units of R. So, what you need to prove it that the units of the polynomial ring are the constant polynomials which are units of R.]

Proof. First, not that if $a \in U(R)$, then there exists $b \in R$ such that $a b=1$. Since $a, b \in R[x]$ [as $R \subseteq R[x]]$, as have that $a \in U(R[x])$. [So $U(R) \subseteq U(R[x])$.]
Now, let $f \in U(R[x])$. Then, there is $g \in R[x]$ such that $f \cdot g=1$. Then, $\operatorname{deg}(f \cdot g)=\operatorname{deg}(1)=$ 0 . Since R is a domain, we have that $\operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g)$. So, $\operatorname{deg}(f)+\operatorname{deg}(g)=0$. Thus, $\operatorname{deg}(f)=\operatorname{deg}(g)=0$, and hence $f, g \in R$. Since their product is 1 , we have that f [and $g]$ is in $U(R)$. [So, $U(R[x]) \subseteq U(R)$. Since we also have the other inclusion, we have equality.]
4) Let F be a field having $\mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}$ as a subfield. Prove that for all $a \in F$ we have that $a+a=0$ [i.e., $a=-a]$.

Proof. In \mathbb{F}_{2} we have $1+1=0$. Since \mathbb{F}_{2} is a subfield of F, we have that $1+1=0$ in F also. [They have the same 1 and same addition.] Now let $a \in F$. Then

$$
a+a=a(1+1)=a \cdot 0=0
$$

5) Let F be a finite field with n elements and $a \in F \backslash\{0\}$. Prove that there is $k \in\{1,2, \ldots, n\}$ such that $a^{k}=1$. [Hint: Consider the set $S=\left\{1, a, a^{2}, a^{3}, \ldots, a^{n}\right\} \subseteq F$. How many distinct elements can S have?]

Proof. Since $S \subseteq F$, and F has n elements, we have that S has at most n elements. So, there are $i, j \in\{0,1,2, \ldots, n\}$, with $i<j$, such that $a^{i}=a^{j}$ [otherwise, S would have $n+1$ elements].
Since $a \neq 0$, we have an inverse a^{-1}. Then,

$$
\left(a^{-1}\right)^{i} \cdot a^{i}=a^{-i} \cdot a^{i}=a^{-i+i}=a^{0}=1,
$$

and

$$
\left(a^{-1}\right)^{i} \cdot a^{j}=a^{-i} \cdot a^{j}=a^{j-i} .
$$

But, since $a^{j}=a^{i}$, we then have $a^{j-i}=1$. So, $k=j-i \in\{1, \ldots, n\}$ and $a^{k}=1$.

