1) Let $\sigma, \tau \in S_{9}$ be given by

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
5 & 7 & 2 & 8 & 3 & 9 & 1 & 6 & 4
\end{array}\right) \quad \text { and } \quad \tau=\left(\begin{array}{lllll}
1 & 5 & 3
\end{array}\right)(24489) .
$$

(a) [5 points] Write the complete factorization of $\sigma$ into disjoint cycles.

Solution. We have:

$$
\sigma=(15327)(4869)
$$

(b) [4 points] Compute $\sigma^{-1}$. [Your answer can be in any form.]

Solution. We have:

$$
\sigma^{-1}=\left(\begin{array}{llllllllllll}
1 & 7 & 2 & 3 & 5
\end{array}\right)\left(\begin{array}{llllllllll}
4 & 9 & 6 & 8
\end{array}\right)=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
7 & 3 & 5 & 9 & 1 & 8 & 2 & 4 & 6
\end{array}\right)
$$

(c) [4 points] Compute $\tau \sigma$. [Your answer can be in any form.]

Solution. We have:

$$
\tau \sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
3 & 7 & 4 & 9 & 1 & 2 & 5 & 6 & 8
\end{array}\right)=\left(\begin{array}{ll}
134986275
\end{array}\right) .
$$

(d) [4 points] Compute $\sigma \tau \sigma^{-1}$. [Your answer can be in any form.]

Solution. We have:

$$
\sigma \tau \sigma^{-1}=\left(\begin{array}{ll}
5 & 3
\end{array}\right)(7864) .
$$

(e) [4 points] Write $\tau$ as a product of transpositions.

Solution. We have:

$$
\tau=(13)(15)(29)(28)(24)
$$

(f) [4 points] Compute $\operatorname{sign}(\tau)$ and $|\tau|$.

Solution. We have:

$$
\operatorname{sign}(\tau)=(-1)^{5}=-1 \quad \text { and } \quad|\tau|=\operatorname{lcm}(3,4)=12
$$

2) [10 points] Give the set of all solutions of the system

$$
\begin{aligned}
& 3 x \equiv 2 \quad(\bmod 5), \\
& x \equiv 3 \\
&(\bmod 11) .
\end{aligned}
$$

Solution. Since $2 \cdot 3 \equiv 1(\bmod 5)$, we have that the system is equivalent to

$$
\begin{aligned}
& x \equiv 4 \quad(\bmod 5) \\
& x \equiv 3 \quad(\bmod 11)
\end{aligned}
$$

Now, $1=1 \cdot 11-2 \cdot 5$. So, the solutions are all integers of the form $x=4 \cdot 1 \cdot 11-3 \cdot 2 \cdot 5+55 k=$ $14+55 k$, for $k \in \mathbb{Z}$.
3) [10 points] Let $G$ be an Abelian group [with multiplicative notation] and $a, b \in G$. Prove that

$$
\langle a, b\rangle \stackrel{\text { def }}{=}\left\{a^{m} \cdot b^{n}: m, n \in \mathbb{Z}\right\}
$$

is a subgroup of $G$.
Proof. Since $1=1 \cdot 1=a^{0} \cdot b^{0}$, we have that $1 \in\langle a, b\rangle$.
Now, let $x, y \in\langle a, b\rangle$, Then, there are $m, n, r, s \in \mathbb{Z}$ such that $x=a^{m} \cdot b^{n}$ and $y=a^{r} \cdot b^{s}$. Since $G$ is Abelian, we have that

$$
x \cdot y^{-1}=\left(a^{m} \cdot b^{n}\right)\left(a^{r} \cdot a^{s}\right)^{-1}=\left(a^{m} \cdot b^{n}\right)\left(a^{-r} \cdot b^{-s}\right)=\left(a^{m} \cdot a^{-r}\right)\left(b^{m} \cdot b^{-s}\right)=a^{m-r} b^{n-s} .
$$

Since $m-r, n-s \in \mathbb{Z}$, we have that $x y^{-1} \in\langle a, b\rangle$. Hence, $\langle a, b\rangle$ is a subgroup of $G$.
4) [10 points] Prove that if $R$ is a domain, then $U(R[x])=U(R)$. [Remember, $U(R)$ is the set of units of $R$, which I usually denote by $R^{\times}$. So, what you need to prove it that the units of the polynomial ring are the constant polynomials which are units of $R$.]

Solution. See solutions for Midterm 2.
5) Examples:
(a) [5 points] Give an example of a finite non-commutative ring [with $1 \neq 0$ ]. [What examples of non-commutative rings do you know?]

Solution. Let

$$
R \stackrel{\text { def }}{=} M_{2}\left(\mathbb{F}_{2}\right)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{F}_{2}\right\} .
$$

Then $|R|=2^{4}=16$ and it's not commutative as

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right) \quad \text { while } \quad\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) .
$$

(b) [5 points] Give an example of an infinite ring $R$ for which $2015 \cdot a=0$ for all $a \in R$.

Solution. $R \stackrel{\text { def }}{=}(\mathbb{Z} / 2015 \mathbb{Z})[x]$ works $\left[\right.$ or even $\left.\mathbb{F}_{5}[x]\right]$.
6) [10 points] Let $R$ be a [possibly non-commutative] ring [with $1 \neq 0$ ] and $a \in R$ such that there are $s, t \in R$ for which $s a=a t=1$. Prove that $s=t$.

Proof. We have:

$$
s=s \cdot 1=s(a t)=(s a) t=1 \cdot t=t
$$

7) Let $G=\{1, a, b\}$ be a group [with multiplicative notation] with exactly three elements. [So, $1, a$ and $b$ are distinct and 1 is the identity of $G$.]
(a) [7 points] Prove that $a b=1$. [Hint: Check that any other possibility would be impossible.]

Proof. Since $G$ is closed under multiplication, we have that $a b$ is either $1, a$ or $b$. If $a b=a$, then [since we have cancellation in groups] we have that $b=1$, which is false. If $a b=b$, then we have that $a=1$, which is also false. So, we must have that $a b=1$.
(b) [8 points] Prove that $a^{2}=b$. [Hint: Check that any other possibility would be impossible.]

Solution. As above, we have that $a^{2}$ must be either $1, a$ or $b$. If $a^{2}=1$, by the previous item we have that $a^{2}=a b$, and so $1=b$, which is false. [Alternatively, the previous item says that $b=a^{-1}$, while $a^{2}=1$ says that $a^{-1}=a$, which would say $a=b$, which is a contradiction.] If $a^{2}=a$, then $a=1$ [cancellation again], but that is false. So, the only possibility is that $a^{2}=b$.
8) [10 points] Let $R$ be a ring [with $1 \neq 0$ ] and suppose there is $a \in R$, with $a \neq 0$, such that $a^{n}=0$ for some $n \in \mathbb{Z}_{\geq 1}$. Prove that there is $b \in R \backslash\{0\}$ such that $b^{2}=0$. [Hint: Break into $n$ even or odd cases.]

Proof. Suppose $a \neq 0$ and $a^{n}=0$ for some $n \in \mathbb{Z}_{\geq 1}$. Let $n$ be the minimal positive integer with this property [using the Well Ordering Principle].

Suppose $n$ is even, i.e., that $n=2 m$ for some $m \in \mathbb{Z}_{\geq 1}$. By the minimality of $n$, we have that $a^{m} \neq 0$ as $m<n$ ]. So, taking $b=a^{m}$, we have that

$$
b^{2}=\left(a^{m}\right)^{2}=a^{2 m}=a^{n}=0 .
$$

Now, suppose that $n$ is odd. Note that $n \neq 1$, as $0 \neq a=a^{1}$. So, $n=2 m+1$, with $m \in \mathbb{Z}_{\geq 1}$. Let $b=a^{n+1}$. Since $m>0$, we have that $2 m+1=m+(m+1)>m+1$. So, by the minimality of $n$, we have that $b=a^{m+1} \neq 0$. But,

$$
b^{2}=\left(a^{m+1}\right)^{2}=a^{2 m+2}=a^{2 m+1} \cdot a=a^{n} \cdot a=0 \cdot a=0
$$

