
1) Let σ, τ ∈ S9 be given by

σ =

(
1 2 3 4 5 6 7 8 9
5 7 2 8 3 9 1 6 4

)
and τ = (1 5 3)(2 4 8 9).

(a) [5 points] Write the complete factorization of σ into disjoint cycles.

Solution. We have:
σ = (1 5 3 2 7)(4 8 6 9).

(b) [4 points] Compute σ−1. [Your answer can be in any form.]

Solution. We have:

σ−1 = (1 7 2 3 5)(4 9 6 8) =

(
1 2 3 4 5 6 7 8 9
7 3 5 9 1 8 2 4 6

)
.

(c) [4 points] Compute τσ. [Your answer can be in any form.]

Solution. We have:

τσ =

(
1 2 3 4 5 6 7 8 9
3 7 4 9 1 2 5 6 8

)
= (1 3 4 9 8 6 2 7 5).

(d) [4 points] Compute στσ−1. [Your answer can be in any form.]

Solution. We have:
στσ−1 = (5 3 2)(7 8 6 4).

(e) [4 points] Write τ as a product of transpositions.

Solution. We have:
τ = (1 3)(1 5)(2 9)(2 8)(2 4)

(f) [4 points] Compute sign(τ) and |τ |.

Solution. We have:

sign(τ) = (−1)5 = −1 and |τ | = lcm(3, 4) = 12.
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2) [10 points] Give the set of all solutions of the system

3x ≡ 2 (mod 5),

x ≡ 3 (mod 11).

Solution. Since 2 · 3 ≡ 1 (mod 5), we have that the system is equivalent to

x ≡ 4 (mod 5),

x ≡ 3 (mod 11).

Now, 1 = 1·11−2·5. So, the solutions are all integers of the form x = 4·1·11−3·2·5+55k =
14 + 55k, for k ∈ Z.

3) [10 points] Let G be an Abelian group [with multiplicative notation] and a, b ∈ G. Prove
that

〈a, b〉 def= {am · bn : m,n ∈ Z}

is a subgroup of G.

Proof. Since 1 = 1 · 1 = a0 · b0, we have that 1 ∈ 〈a, b〉.
Now, let x, y ∈ 〈a, b〉, Then, there are m,n, r, s ∈ Z such that x = am · bn and y = ar · bs.

Since G is Abelian, we have that

x · y−1 = (am · bn)(ar · as)−1 = (am · bn)(a−r · b−s) = (am · a−r)(bm · b−s) = am−rbn−s.

Since m− r, n− s ∈ Z, we have that xy−1 ∈ 〈a, b〉. Hence, 〈a, b〉 is a subgroup of G.

4) [10 points] Prove that if R is a domain, then U(R[x]) = U(R). [Remember, U(R) is the
set of units of R, which I usually denote by R×. So, what you need to prove it that the units
of the polynomial ring are the constant polynomials which are units of R.]

Solution. See solutions for Midterm 2.
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5) Examples:

(a) [5 points] Give an example of a finite non-commutative ring [with 1 6= 0]. [What
examples of non-commutative rings do you know?]

Solution. Let

R
def
= M2(F2) =

{(
a b
c d

)
: a, b, c, d ∈ F2

}
.

Then |R| = 24 = 16 and it’s not commutative as(
1 1
1 1

)(
1 0
0 0

)
=

(
1 0
1 0

)
while

(
1 0
0 0

)(
1 1
1 1

)
=

(
1 1
0 0

)
.

(b) [5 points] Give an example of an infinite ring R for which 2015 · a = 0 for all a ∈ R.

Solution. R
def
= (Z/2015Z)[x] works [or even F5[x]].

6) [10 points] Let R be a [possibly non-commutative] ring [with 1 6= 0] and a ∈ R such that
there are s, t ∈ R for which sa = at = 1. Prove that s = t.

Proof. We have:
s = s · 1 = s(at) = (sa)t = 1 · t = t.
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7) Let G = {1, a, b} be a group [with multiplicative notation] with exactly three elements.
[So, 1, a and b are distinct and 1 is the identity of G.]

(a) [7 points] Prove that ab = 1. [Hint: Check that any other possibility would be
impossible.]

Proof. Since G is closed under multiplication, we have that ab is either 1, a or b. If
ab = a, then [since we have cancellation in groups] we have that b = 1, which is false. If
ab = b, then we have that a = 1, which is also false. So, we must have that ab = 1.

(b) [8 points] Prove that a2 = b. [Hint: Check that any other possibility would be
impossible.]

Solution. As above, we have that a2 must be either 1, a or b. If a2 = 1, by the previous
item we have that a2 = ab, and so 1 = b, which is false. [Alternatively, the previous
item says that b = a−1, while a2 = 1 says that a−1 = a, which would say a = b, which
is a contradiction.] If a2 = a, then a = 1 [cancellation again], but that is false. So, the
only possibility is that a2 = b.

8) [10 points] Let R be a ring [with 1 6= 0] and suppose there is a ∈ R, with a 6= 0, such that
an = 0 for some n ∈ Z≥1. Prove that there is b ∈ R \ {0} such that b2 = 0. [Hint: Break
into n even or odd cases.]

Proof. Suppose a 6= 0 and an = 0 for some n ∈ Z≥1. Let n be the minimal positive integer
with this property [using the Well Ordering Principle].

Suppose n is even, i.e., that n = 2m for some m ∈ Z≥1. By the minimality of n, we have
that am 6= 0 [as m < n]. So, taking b = am, we have that

b2 = (am)2 = a2m = an = 0.

Now, suppose that n is odd. Note that n 6= 1, as 0 6= a = a1. So, n = 2m + 1, with
m ∈ Z≥1. Let b = an+1. Since m > 0, we have that 2m+ 1 = m+ (m+ 1) > m+ 1. So, by
the minimality of n, we have that b = am+1 6= 0. But,

b2 = (am+1)2 = a2m+2 = a2m+1 · a = an · a = 0 · a = 0.
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