1) [12 points] Use the Extended Euclidean Algorithm to write the GCD of 87 and 51 as a linear combination of themselves. Show the computations explicitly! [Hint: You should get 3 for the GCD!]

Solution. We have

$$
\begin{aligned}
87 & =1 \cdot 51+36 \\
51 & =1 \cdot 36+15 \\
36 & =2 \cdot 15+6 \\
15 & =2 \cdot 6+3 \\
6 & =2 \cdot 3+0
\end{aligned}
$$

So,

$$
\begin{aligned}
3 & =15-2 \cdot 6 \\
& =15-2 \cdot(36-2 \cdot 15) \\
& =(-2) \cdot 36+5 \cdot 15 \\
& =(-2) \cdot 36+5 \cdot(51-36) \\
& =5 \cdot 51+(-7) \cdot 36 \\
& =5 \cdot 51+(-7) \cdot(87-51) \\
& =(-7) \cdot 87+12 \cdot 51 .
\end{aligned}
$$

2) [12 points] Find the remainder of the division of 3^{222} when divided by 7 [i.e., what is 3^{222} congruent to modulo 7]. Show your computations explicitly!

Solution. We have:

$$
\begin{aligned}
222 & =31 \cdot 7+5 \\
31 & =4 \cdot 7+3 \\
4 & =0 \cdot 7+4 .
\end{aligned}
$$

So, $222=5+3 \cdot 7+4 \cdot 7^{2}$. Hence,

$$
3^{222} \equiv 3^{5+3+4}=3^{12} \quad(\bmod 7)
$$

Now, $12=5+1 \cdot 7$, so

$$
3^{222} \equiv 3^{12} \equiv 3^{5+1}=3^{6}=\left(3^{2}\right)^{3}=(9)^{3}=2^{3}=8 \equiv 1 \quad(\bmod 7)
$$

3) [12 points] Give the set of all solutions of the system

$$
\begin{aligned}
2 x & \equiv 4 \\
x & (\bmod 5) \\
x & (\bmod 13)
\end{aligned}
$$

Solution. We first solve for x in first equation. Note that $3 \cdot 2 \equiv 1(\bmod 5)$, so, multiplying the first equation by 3 , we get

$$
x \equiv 12 \equiv 2 \quad(\bmod 5)
$$

Hence, we get the system:

$$
\begin{aligned}
& x \equiv 2 \quad(\bmod 5) \\
& x \equiv 3 \quad(\bmod 13)
\end{aligned}
$$

Now, since $(5,13)=1$, we can apply the Chinese Remainder Theorem: we have $1=2 \cdot 13+$ $(-5) \cdot 5$. So, $x=2 \cdot 13 \cdot 2+(-5) \cdot 5 \cdot 3=-23$ is a common solution. Hence, all solutions are of the form $-23+65 k$, for $k \in \mathbb{Z}$.
4) [12 points] If we have that

$$
7^{12} \equiv 1 \quad(\bmod 720)
$$

then, what is the remainder of the division of 7^{122} when divided by 720 ?
Solution. We have

$$
7^{122}=7^{12 \cdot 10+2}=\left(7^{12}\right)^{10} \cdot 7^{2} \equiv 1^{10} \cdot 49 \equiv 49 \quad(\bmod 720)
$$

So, the remainder is 49 .

5) LCM and GCD:

(a) [6 points] Let $a=2^{3} \cdot 5^{4} \cdot 11$ and $b=3^{2} \cdot 5^{2} \cdot 7 \cdot 11$. Find (a, b) [the GCD] and $[a, b]$ [the LCM]. [You can leave powers and products indicated.]

Solution. We have:

$$
\begin{aligned}
(a, b) & =2^{0} \cdot 3^{0} \cdot 5^{2} \cdot 7^{0} \cdot 11 \\
{[a, b] } & =2^{3} \cdot 3^{2} \cdot 5^{4} \cdot 7 \cdot 11
\end{aligned}
$$

(b) [6 points] If $a=14,(a, b)=7$ and $[a, b]=42$, then what is b ? [Justify!]

Solution. We have that

$$
a b=(a, b) \cdot[a, b] .
$$

So,

$$
b=\frac{(a, b) \cdot[a, b]}{a}=\frac{7 \cdot 42}{14}=21 .
$$

6) [12 points] Prove that for all integers a and b, we have $(a, b)=(a, a-b)$.

Proof. Suffices to show that a and b have exactly the same common divisors as a and $a-b$, as then their greatest common divisors must coincide. So, we prove that $d \mid a$ and $d \mid b$ if and only if $d \mid a$ and $d \mid(a-b)$.
So, suppose that $d \mid a$ and $d \mid b$. By our old lemma, we have that $d \mid(a-b)$. Since also $d \mid a$ [by assumption], we are done [with this part].
Now, assume that $d \mid a$ and $d \mid(a-b)$. Then, by our old lemma [again], we have that $d \mid(a-(a-b))=b$, so $d \mid b$. Since also $d \mid a$ [by assumption], we are done [with this part too].

