Polynomials

We have already talked about polynomials. I will stick with the "intuitive approach" [rather than the formal one].

Since we've talked about and used polynomials before, I will skip most of this section.

Read the text (Section 4.5) if you are not comfortable with polynomials!

Degree

Theorem
If R is a domain, then for $f, g \in R[x]$, we have:

$$
\operatorname{deg}(f \cdot g)=\operatorname{deg}(f)+\operatorname{deg}(g)
$$

and

$$
\operatorname{deg}(f+g) \leq \max \{\operatorname{deg}(f), \operatorname{deg}(g)\}
$$

The equality in the expression above always hold if $\operatorname{deg}(f) \neq \operatorname{deg}(g)$.

Remember: if $a \in R \backslash\{0\}$, then $\operatorname{deg}(a)=0$ and $\operatorname{deg}(0)=-\infty$.

Division Algorithm

We've already discussed the division algorithm: given $f, g \in R[x]$, with $g \neq 0$ and its leading coefficient [i.e., the coefficient of the term of highest degree] is a unit, then there are $q, r \in R[x]$ such that

$$
f=g \cdot q+r, \quad \text { where } \operatorname{deg}(r)<\operatorname{deg}(g)
$$

In particular, if R is a field, and $g \neq 0$, then we have q and r as above.

The procedure to find q and r is exactly the same as the one you've learned for $\mathbb{R}[x]$ in algebra or precalculus. [If you forgot it, review!]

Division by Polynomial of Degree One

Let's work in $R[x]$ where R is a domain. Dividing $f(x)$ by $g=x-a$, where $a \in R$, we have that

$$
f=(x-a) q+r, \quad \text { where } \operatorname{deg}(r)<\operatorname{deg}(x-a)=1 .
$$

Hence, $r \in R$ [a constant]. Evaluating at $x=a$, we have

$$
f(a)=(a-a) \cdot q(a)+r(a)=r
$$

i.e., $r=f(a)$. So,

$$
f=(x-a) q+f(a), \quad \text { for some } q \in R[x] .
$$

Corollary
If R is a domain and $a \in R$, then $(x-a)$ divides $f \in R[X]$ iff $f(a)=0$.

Number of Roots

Corollary

If R is a domain and $\operatorname{deg}(f)=n \geq 0$, then f has at most n roots in R.

Proof.

Proceed by induction. The case $n=0$ is trivial.
Now, assume true for $(n-1)$ and let $\operatorname{deg}(f)=n$. If f has no roots in R, we are done. So, assume $a \in R$ and $f(a)=0$. Then, $f=(x-a) g$, for some $g \in R[x]$. Then, $\operatorname{deg}(g)=n-1$. By the IH, g has at most $(n-1)$ roots in R.
Now, we claim if $f(b)=0$, for $b \in R$, then either $a=b$ or $g(b)=0$: we have that $0=f(b)=(b-a) \cdot g(b)$. Since R is a domain [and $(b-a), g(b) \in R$], we have that either $b-a=0$ or $g(b)=0$, proving the claim and finishing the proof.

Other Remarks

Note that if R is not a domain, the above result is not necessarily true: let $R=\mathbb{Z} / 6 \mathbb{Z}$ and $f=2 x$. Then $x=0,3$ are two distinct roots of $f[\operatorname{and} \operatorname{deg}(f)=1]$.

We have seen in class that $F[x]$, where F is a field, is a PID [and hence noetherian and a UFD]. The idea is that we can do the long division by every non-zero element of $F[x]$. [Given $/$ and ideal of $F[x]$, take f as an element of I with least degree. Use long division to show that $I=(f)$.]

Note that we also have an Euclidean algorithm, exactly the same as for \mathbb{Z}, which allows us to explicitly write GCDs as linear combinations of elements. [Domains in which we have an "Euclidean Algorithm" are called Euclidean Domains. These are always PIDs, and hence also UFDs and noetherian.]

