## Review

## Definition

Let $R$ be a commutative ring.

- An ideal $I$ is principal, if there is $a \in R$ such that

$$
I=(a) \stackrel{\text { def }}{=} a R=\{a x: x \in R\} .
$$

- A domain $R$ is a principal ideal domain (PID) if every ideal of $R$ is principal.

Example
The following are PIDs: $\mathbb{Z}, F$ where $F$ is a field, $F[x]$ where $F$ is a field.
Note that $\mathbb{Z}[x]$ is not a PID, as $(2, x)$ is not principal.

## Review (cont.)

## Definition

Let $R$ be a domain. Then:

- $b$ is an associate of $a$ if there is $u \in R^{\times}$such that $b=a u$. We shall write $b \sim a$. Note that $a=b u^{-1}\left[\right.$ and $\left.u^{-1} \in R^{\times}\right]$, and hence also $a \sim b$. Therefore, we may say $a$ and $b$ are associates. [In fact, $\sim$ is an equivalence relation.]
- We say that a divides $b$, or $b$ is a multiple of $a$, if $b=a c$ for some $c \in R$. We write $a \mid b$. [So, $b \in(a)$ iff $a \mid b$.] Note: $a \sim b$ iff $a \mid b$ and $b \mid a$ iff $(a)=(b)$.
- An element $a \notin R^{\times} \cup\{0\}$ is irreducible if the only divisors are units or associates of a.
- An element $p \notin R^{\times} \cup\{0\}$ is prime if whenever $p \mid a b$, then either $p \mid a$ or $p \mid b$. [This means $(p)$ is a prime ideal iff $p$ is prime.]

Note that associates of primes (resp. irreducibles) are also primes (resp. irreducibles). Also, primes are always irreducible.

## Review (cont.)

## Definition

Let $R$ be a domain. Then:

- $d$ is $a$ GCD of $\left\{a_{1}, \ldots, a_{n}\right\} \subseteq R$ if $d \mid a_{i}$ for all $i$ and if $e \mid a_{i}$ for all $i$, then $e \mid d$. [Note that two GCDs must be associates.]
- $a, b \in R$ are relatively prime if their GCD is a unit.
- $m$ is LCM of $\left\{a_{1}, \ldots, a_{n}\right\} \subseteq R$ if $a_{i} \mid m$ for all $i$ and if $a_{i} \mid n$ for all $i$, then $m \mid n$. [Note that two LCMs must be associates.]


## UFDs

## Definition

A domain $R$ is a unique factorization domain (UFD) if for all $a \in R$, with $a \notin R^{\times} \cup\{0\}$ :

- Finite Factorization: there is $u \in R^{\times}$and $p_{1}, \ldots, p_{n}$ irreducible such that $a=u \cdot p_{1} \cdots p_{n}$; and
- Uniqueness: if also $a=v \cdot q_{1} \cdots q_{m}$, where $v \in R^{\times}$and the $q_{i}$ 's are irreducible, then $m=n$ and after possibly reordering, we have that $p_{i}$ and $q_{i}$ are associates.

Goal: show that PIDs are UFDs.

## GCDs

Theorem
Let $R$ be a PID and $a_{1}, \ldots, a_{n} \in R \backslash\{0\}$, with $n \geq 1$. Then there is a GCD, say $d$, of the $a_{i}$ 's, and $r_{i} \in R$ such that $d=\sum r_{i} a_{i}$.
[Thus, any GCD of the $a_{i}$ 's is a linear combination of them.]
Proof.
Idea: $\left(a_{1}, \ldots, a_{n}\right)=(d)$.
Corollary
Let $R$ be a PID. Then every irreducible is prime. [l've shown an example of $R$ not a PID where this is false! Remember the converse is always true!] Also note that this is true for UFDs! [Exercise.]

## Corollary

A non-zero ideal (a) in a PID is maximal iff a is prime [or irreducible].

## Noetherian Rings

## Definition

Let $R$ be a ring. $R$ satisfies the ascending chain condition (ACC) or is noetherian if every ascending chain of ideals:

$$
I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \cdots,
$$

eventually becomes constant [i.e., $I_{n}=I_{n+1}=I_{n+1}=\cdots$ for some $n$ large enough].

## PIDs Are Noetherian

## Theorem

PIDs are Noetherian.
Proof.
Let:

$$
\left(a_{1}\right) \subseteq\left(a_{2}\right) \subseteq\left(a_{3}\right) \subseteq \cdots
$$

Let $I=\bigcup_{i=1}^{\infty}\left(a_{i}\right)$. Since $R$ is a PID, there is $a \in R$ such that $I=(a)$. Then $\left(a_{i}\right) \subseteq I=(a)$, i.e., $a \mid a_{i}$ for all $i$. Also, since $a \in I, a \in\left(a_{n}\right)$ for some $n$, i.e., $a_{n} \mid a$. Since $\left(a_{n}\right) \subseteq\left(a_{k}\right)$ for all $k \geq n$, we have that $a_{k} \mid a$ for all $k \geq n$. Since also, $a \mid a_{i}$ for all $i$, we have that $a$ and $a_{k}$ are associates for all $k \geq n$. Thus, $(a)=\left(a_{k}\right)$ for all $k \geq n$ and hence the sequence is eventually constant.

## Maximal Ideal

Corollary
In a noetherian ring [and in particular in a PID], every proper ideal
[i.e., different from R] is contained in a maximal ideal.
Proof.
Suppose not and let $I$ be an ideal not contained in a maximal ideal. Since $I$ is not maximal, $I \subsetneq l_{2} \neq R$, where $I_{2}$ is an ideal. $l_{2}$ is not maximal, since $I$ is not contained in a maximal ideal.
Repeating, we would get a chain

$$
I \subsetneq I_{2} \subsetneq I_{3} \subsetneq \cdots,
$$

which is a contradiction. Thus, $I$ is contained in a maximal ideal.
Note: This is in fact true for all rings with 1 . The proof uses
Zorn's Lemma.

## Divisibility by Irreducible

## Theorem

Let $R$ be a noetherian domain [e.g., a PID]. Then, every $a \in R$, with a $\notin R^{\times} \cup\{0\}$, is divisible by an irreducible.

## Proof.

Let $a$ as above. If $a$ is irreducible, then we are done. Suppose it is not. Then, $a=a_{1} b_{1}$, where $a_{1}, b_{1} \notin R^{\times} \cup\{0\}$. If either $a_{1}$ or $b_{1}$ is irreducible, we are done. So suppose not. Repeating for $a_{1}$, we have $a_{1}=a_{2} b_{2}$, and again if either is irreducible, we are done [as $\left.a=\left(a_{2} b_{2}\right) b_{1}\right]$.
Suppose this procedure does not end. Then, we have:

$$
(a) \subsetneq\left(a_{1}\right) \subsetneq\left(a_{2}\right) \subsetneq\left(a_{3}\right) \subsetneq \cdots
$$

which is a contradiction. So, eventually, this has to stop, and $a$ is divisible by some irreducible.

## Finite Factorization

## Theorem

Let $R$ be a noetherian domain [e.g., a PID]. Then, we have finite factorization in $R$.

## Proof.

Let $a \in R$, with $a \notin R^{\times} \cup\{0\}$. Since $R$ is noetherian, $a$ is divisible by an irreducible, say $a=p_{1} \cdot a_{1}, p_{1}$ irreducible. If $a_{1} \in R^{\times}$, we are done. So, suppose not. Then, as before, $a_{1}=p_{2} \cdot a_{2}, p_{2}$ irreducible. [So, $a=p_{1} p_{2} a_{2}$.] Repeat. It must stop, as otherwise:

$$
(a) \subsetneq\left(a_{1}\right) \subsetneq\left(a_{2}\right) \subsetneq\left(a_{3}\right) \subsetneq \cdots
$$

So, $a=p_{1} \cdots p_{n} a_{n}$, where $p_{i}$ 's are irreducible and $a_{n} \in R^{\times}$.

## PID Implies UFD

Theorem (Fundamental Theorem of Arithmetic)
If $R$ is a PID, then $R$ is a UFD.
Proof.
Since $R$ is a PID, it is notherian, and as seen above, we have finite factorization. Thus, it only remains to show uniqueness.
Suppose

$$
a=p_{1} \cdots p_{n}=v q_{1} \cdots q_{m}, \quad p_{i}, q_{j} \text { irreducibles. }
$$

Since $p_{1}$ is prime [as $R$ is a PID], it must divide one of the $q_{j}$ 's. WLOG, assume $p_{1} \mid q_{1}$. Since both are irreducible, we must have $p_{1} \sim q_{1}$. Now repeat for $p_{2}, p_{3}, \ldots$. [Exercise: Write a proper proof.]

## Factorization

## Corollary

Let $R$ be a PID and $a \in R$, with a $\notin R^{\times} \cup\{0\}$. Then, there is $u \in R^{\times}$and $p_{1}, \ldots, p_{k}$ non-associate primes such that

$$
a=u p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}
$$

Moreover, if also

$$
a=v q_{1}^{m_{1}} \cdots q_{l}^{m_{l}}
$$

where $v \in R^{\times}$and $q_{1}, \ldots, q_{l}$ are non-associate primes, then $k=I$ and after reordering for each $i$ we have $p_{i}$ and $q_{i}$ are associates and $n_{i}=m_{i}$.

