
Review

Definition
Let R be a commutative ring.

I An ideal I is principal, if there is a ∈ R such that

I = (a)
def
= aR = {ax : x ∈ R}.

I A domain R is a principal ideal domain (PID) if every ideal
of R is principal.

Example

The following are PIDs: Z, F where F is a field, F [x ] where F is a
field.

Note that Z[x ] is not a PID, as (2, x) is not principal.



Review (cont.)

Definition
Let R be a domain. Then:

I b is an associate of a if there is u ∈ R× such that b = au.
We shall write b ∼ a. Note that a = bu−1 [and u−1 ∈ R×],
and hence also a ∼ b. Therefore, we may say a and b are
associates. [In fact, ∼ is an equivalence relation.]

I We say that a divides b, or b is a multiple of a, if b = ac for
some c ∈ R. We write a | b. [So, b ∈ (a) iff a | b.] Note:
a ∼ b iff a | b and b | a iff (a) = (b).

I An element a 6∈ R× ∪ {0} is irreducible if the only divisors
are units or associates of a.

I An element p 6∈ R× ∪ {0} is prime if whenever p | ab, then
either p | a or p | b. [This means (p) is a prime ideal iff p is
prime.]

Note that associates of primes (resp. irreducibles) are also primes
(resp. irreducibles). Also, primes are always irreducible.



Review (cont.)

Definition
Let R be a domain. Then:

I d is a GCD of {a1, . . . , an} ⊆ R if d | ai for all i and if e | ai
for all i , then e | d . [Note that two GCDs must be
associates.]

I a, b ∈ R are relatively prime if their GCD is a unit.

I m is a LCM of {a1, . . . , an} ⊆ R if ai | m for all i and if ai | n
for all i , then m | n. [Note that two LCMs must be
associates.]



UFDs

Definition
A domain R is a unique factorization domain (UFD) if for all
a ∈ R, with a 6∈ R× ∪ {0}:

I Finite Factorization: there is u ∈ R× and p1, . . . , pn

irreducible such that a = u · p1 · · · pn; and

I Uniqueness: if also a = v · q1 · · · qm, where v ∈ R× and the
qi ’s are irreducible, then m = n and after possibly reordering,
we have that pi and qi are associates.

Goal: show that PIDs are UFDs.



GCDs

Theorem
Let R be a PID and a1, . . . , an ∈ R \ {0}, with n ≥ 1. Then there
is a GCD, say d, of the ai ’s, and ri ∈ R such that d =

∑
riai .

[Thus, any GCD of the ai ’s is a linear combination of them.]

Proof.
Idea: (a1, . . . , an) = (d).

Corollary

Let R be a PID. Then every irreducible is prime. [I’ve shown an
example of R not a PID where this is false! Remember the
converse is always true!] Also note that this is true for UFDs!
[Exercise.]

Corollary

A non-zero ideal (a) in a PID is maximal iff a is prime [or
irreducible].



Noetherian Rings

Definition
Let R be a ring. R satisfies the ascending chain condition
(ACC) or is noetherian if every ascending chain of ideals:

I1 ⊆ I2 ⊆ I3 ⊆ · · · ,

eventually becomes constant [i.e., In = In+1 = In+1 = · · · for some
n large enough].



PIDs Are Noetherian

Theorem
PIDs are Noetherian.

Proof.
Let:

(a1) ⊆ (a2) ⊆ (a3) ⊆ · · · .

Let I =
⋃∞

i=1(ai ). Since R is a PID, there is a ∈ R such that
I = (a). Then (ai ) ⊆ I = (a), i.e., a | ai for all i .
Also, since a ∈ I , a ∈ (an) for some n, i.e., an | a. Since
(an) ⊆ (ak) for all k ≥ n, we have that ak | a for all k ≥ n.
Since also, a | ai for all i , we have that a and ak are associates for
all k ≥ n. Thus, (a) = (ak) for all k ≥ n and hence the sequence is
eventually constant.



Maximal Ideal

Corollary

In a noetherian ring [and in particular in a PID], every proper ideal
[i.e., different from R] is contained in a maximal ideal.

Proof.
Suppose not and let I be an ideal not contained in a maximal
ideal. Since I is not maximal, I ( I2 6= R, where I2 is an ideal. I2 is
not maximal, since I is not contained in a maximal ideal.
Repeating, we would get a chain

I ( I2 ( I3 ( · · · ,

which is a contradiction. Thus, I is contained in a maximal
ideal.

Note: This is in fact true for all rings with 1. The proof uses
Zorn’s Lemma.



Divisibility by Irreducible

Theorem
Let R be a noetherian domain [e.g., a PID]. Then, every a ∈ R,
with a 6∈ R× ∪ {0}, is divisible by an irreducible.

Proof.
Let a as above. If a is irreducible, then we are done. Suppose it is
not. Then, a = a1b1, where a1, b1 6∈ R× ∪ {0}. If either a1 or b1 is
irreducible, we are done. So suppose not. Repeating for a1, we
have a1 = a2b2, and again if either is irreducible, we are done [as
a = (a2b2)b1].
Suppose this procedure does not end. Then, we have:

(a) ( (a1) ( (a2) ( (a3) ( · · ·

which is a contradiction. So, eventually, this has to stop, and a is
divisible by some irreducible.



Finite Factorization

Theorem
Let R be a noetherian domain [e.g., a PID]. Then, we have finite
factorization in R.

Proof.
Let a ∈ R, with a 6∈ R× ∪ {0}. Since R is noetherian, a is divisible
by an irreducible, say a = p1 · a1, p1 irreducible. If a1 ∈ R×, we are
done. So, suppose not. Then, as before, a1 = p2 · a2, p2

irreducible. [So, a = p1p2a2.] Repeat. It must stop, as otherwise:

(a) ( (a1) ( (a2) ( (a3) ( · · ·

So, a = p1 · · · pnan, where pi ’s are irreducible and an ∈ R×.



PID Implies UFD

Theorem (Fundamental Theorem of Arithmetic)

If R is a PID, then R is a UFD.

Proof.
Since R is a PID, it is notherian, and as seen above, we have finite
factorization. Thus, it only remains to show uniqueness.
Suppose

a = p1 · · · pn = vq1 · · · qm, pi , qj irreducibles.

Since p1 is prime [as R is a PID], it must divide one of the qj ’s.
WLOG, assume p1 | q1. Since both are irreducible, we must have
p1 ∼ q1. Now repeat for p2, p3, . . .. [Exercise: Write a proper
proof.]



Factorization

Corollary

Let R be a PID and a ∈ R, with a 6∈ R× ∪ {0}. Then, there is
u ∈ R× and p1, . . . , pk non-associate primes such that

a = upn1
1 · · · p

nk
k .

Moreover, if also
a = vqm1

1 · · · q
ml
l ,

where v ∈ R× and q1, . . . , ql are non-associate primes, then k = l
and after reordering for each i we have pi and qi are associates
and ni = mi .


