Review

Definition Let R be a commutative ring.

• An ideal I is **principal**, if there is $a \in R$ such that

$$I = (a) \stackrel{\text{def}}{=} aR = \{ax : x \in R\}.$$

► A *domain R* is a **principal ideal domain (PID)** if every ideal of *R* is principal.

Example

The following are PIDs: \mathbb{Z} , F where F is a *field*, F[x] where F is a *field*.

Note that $\mathbb{Z}[x]$ is *not* a PID, as (2, x) is not principal.

Review (cont.)

Definition

Let *R* be a *domain*. Then:

- b is an associate of a if there is u ∈ R[×] such that b = au. We shall write b ~ a. Note that a = bu⁻¹ [and u⁻¹ ∈ R[×]], and hence also a ~ b. Therefore, we may say a and b are associates. [In fact, ~ is an equivalence relation.]
- We say that a divides b, or b is a multiple of a, if b = ac for some c ∈ R. We write a | b. [So, b ∈ (a) iff a | b.] Note: a ~ b iff a | b and b | a iff (a) = (b).
- An element a ∉ R[×] ∪ {0} is irreducible if the only divisors are units or associates of a.
- An element p ∉ R[×] ∪ {0} is prime if whenever p | ab, then either p | a or p | b. [This means (p) is a prime ideal iff p is prime.]

Note that associates of primes (resp. irreducibles) are also primes (resp. irreducibles). Also, primes are always irreducible.

Review (cont.)

Definition

Let *R* be a *domain*. Then:

- *d* is a GCD of {a₁,..., a_n} ⊆ R if d | a_i for all *i* and if e | a_i for all *i*, then e | d. [Note that two GCDs must be associates.]
- $a, b \in R$ are relatively prime if their GCD is a unit.
- m is a LCM of {a₁,..., a_n} ⊆ R if a_i | m for all i and if a_i | n for all i, then m | n. [Note that two LCMs must be associates.]

UFDs

Definition

A domain *R* is a **unique factorization domain (UFD)** if for all $a \in R$, with $a \notin R^{\times} \cup \{0\}$:

- ► Finite Factorization: there is u ∈ R[×] and p₁,..., p_n irreducible such that a = u · p₁ · · · p_n; and
- ► Uniqueness: if also a = v · q₁ · · · q_m, where v ∈ R[×] and the q_i's are irreducible, then m = n and after possibly reordering, we have that p_i and q_i are associates.

Goal: show that PIDs are UFDs.

GCDs

Theorem

Let R be a PID and $a_1, \ldots, a_n \in R \setminus \{0\}$, with $n \ge 1$. Then there is a GCD, say d, of the a_i 's, and $r_i \in R$ such that $d = \sum r_i a_i$. [Thus, any GCD of the a_i 's is a linear combination of them.]

Proof.

Idea: $(a_1, ..., a_n) = (d)$.

Corollary

Let R be a PID. Then every irreducible is prime. [I've shown an example of R not a PID where this is false! Remember the converse is always true!] Also note that this is true for UFDs! [Exercise.]

Corollary

A non-zero ideal (a) in a PID is maximal iff a is prime [or irreducible].

Definition

Let R be a ring. R satisfies the ascending chain condition (ACC) or is noetherian if every ascending chain of ideals:

$$I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots,$$

eventually becomes constant [i.e., $I_n = I_{n+1} = I_{n+1} = \cdots$ for some n large enough].

PIDs Are Noetherian

Theorem PIDs are Noetherian.

Proof.

Let:

$$(a_1)\subseteq (a_2)\subseteq (a_3)\subseteq\cdots.$$

Let $I = \bigcup_{i=1}^{\infty} (a_i)$. Since R is a PID, there is $a \in R$ such that I = (a). Then $(a_i) \subseteq I = (a)$, i.e., $a \mid a_i$ for all i. Also, since $a \in I$, $a \in (a_n)$ for some n, i.e., $a_n \mid a$. Since $(a_n) \subseteq (a_k)$ for all $k \ge n$, we have that $a_k \mid a$ for all $k \ge n$. Since also, $a \mid a_i$ for all i, we have that a and a_k are associates for all $k \ge n$. Thus, $(a) = (a_k)$ for all $k \ge n$ and hence the sequence is eventually constant.

Maximal Ideal

Corollary

In a noetherian ring [and in particular in a PID], every proper ideal [i.e., different from R] is contained in a maximal ideal.

Proof.

Suppose not and let I be an ideal not contained in a maximal ideal. Since I is not maximal, $I \subsetneq I_2 \neq R$, where I_2 is an ideal. I_2 is not maximal, since I is not contained in a maximal ideal. Repeating, we would get a chain

 $I \subsetneq I_2 \subsetneq I_3 \subsetneq \cdots,$

which is a contradiction. Thus, *I* is contained in a maximal ideal.

Note: This is in fact true for all rings with 1. The proof uses *Zorn's Lemma*.

Divisibility by Irreducible

Theorem

Let R be a noetherian domain [e.g., a PID]. Then, every $a \in R$, with $a \notin R^{\times} \cup \{0\}$, is divisible by an irreducible.

Proof.

Let *a* as above. If *a* is irreducible, then we are done. Suppose it is not. Then, $a = a_1b_1$, where $a_1, b_1 \notin R^{\times} \cup \{0\}$. If either a_1 or b_1 is irreducible, we are done. So suppose not. Repeating for a_1 , we have $a_1 = a_2b_2$, and again if either is irreducible, we are done [as $a = (a_2b_2)b_1$].

Suppose this procedure does *not* end. Then, we have:

$$(a) \subsetneq (a_1) \subsetneq (a_2) \subsetneq (a_3) \subsetneq \cdots$$

which is a contradiction. So, eventually, this has to stop, and a is divisible by some irreducible.

Finite Factorization

Theorem

Let R be a noetherian domain [e.g., a PID]. Then, we have finite factorization in R.

Proof.

Let $a \in R$, with $a \notin R^{\times} \cup \{0\}$. Since R is noetherian, a is divisible by an irreducible, say $a = p_1 \cdot a_1$, p_1 irreducible. If $a_1 \in R^{\times}$, we are done. So, suppose not. Then, as before, $a_1 = p_2 \cdot a_2$, p_2 irreducible. [So, $a = p_1 p_2 a_2$.] Repeat. It must stop, as otherwise:

$$(a) \subsetneq (a_1) \subsetneq (a_2) \subsetneq (a_3) \subsetneq \cdots$$

So, $a = p_1 \cdots p_n a_n$, where p_i 's are irreducible and $a_n \in R^{\times}$.

PID Implies UFD

Theorem (Fundamental Theorem of Arithmetic) If R is a PID, then R is a UFD.

Proof.

Since R is a PID, it is notherian, and as seen above, we have finite factorization. Thus, it only remains to show uniqueness. Suppose

 $a = p_1 \cdots p_n = vq_1 \cdots q_m, \qquad p_i, q_i \text{ irreducibles.}$

Since p_1 is *prime* [as R is a PID], it must divide one of the q_j 's. WLOG, assume $p_1 | q_1$. Since both are irreducible, we must have $p_1 \sim q_1$. Now repeat for p_2, p_3, \ldots [Exercise: Write a proper proof.]

Factorization

Corollary

Let R be a PID and $a \in R$, with $a \notin R^{\times} \cup \{0\}$. Then, there is $u \in R^{\times}$ and p_1, \ldots, p_k non-associate primes such that

$$a=up_1^{n_1}\cdots p_k^{n_k}.$$

Moreover, if also

$$a=vq_1^{m_1}\cdots q_l^{m_l},$$

where $v \in R^{\times}$ and q_1, \ldots, q_l are non-associate primes, then k = land after reordering for each *i* we have p_i and q_i are associates and $n_i = m_i$.